Image methods for pandas dataframes using Pillow.
Features:
- Use
PIL.Image
objects in pandas dataframes - Call
PIL.Image
methods on a column, for example:.crop()
.filter()
.resize()
.rotate()
.transpose()
- Save dataframes with
PIL.Image
objects to Parquet - Process images in parallel with Dask
- Manipulate image datasets from Hugging Face
pip install pandas-image-methods
You can open images as PIL.Image
objects using the .open()
method.
Once the images are opened, you can call any PIL Image method:
import pandas as pd
from pandas_image_methods import PILMethods
pd.api.extensions.register_series_accessor("pil")(PILMethods)
df = pd.DataFrame({"file_path": ["path/to/image.png"]})
df["image"] = df["file_path"].pil.open()
df["image"] = df["image"].pil.rotate(90)
# 0 <PIL.Image.Image size=200x200>
# Name: image, dtype: object, PIL methods enabled
Here is how to enable PIL
methods for PIL Images
created manually:
df = pd.DataFrame({"image": [PIL.Image.open("path/to/image.png")]})
df["image"] = df["image"].pil.enable()
df["image"] = df["image"].pil.rotate(90)
# 0 <PIL.Image.Image size=200x200>
# Name: image, dtype: object, PIL methods enabled
You can save a dataset of PIL Images
to Parquet:
# Save
df = pd.DataFrame({"file_path": ["path/to/image.png"]})
df["image"] = df["file_path"].pil.open()
df.to_parquet("data.parquet")
# Later
df = pd.read_parquet("data.parquet")
df["image"] = df["image"].pil.enable()
This doesn't just save the paths to the image files, but the actual images themselves !
Under the hood it saves dictionaries of {"bytes": <bytes of the image file>, "path": <path or name of the image file>}
.
The images are saved as bytes using their image encoding or PNG by default. Anyone can load the Parquet data even without pandas-image-methods
since it doesn't rely on extension types.
Note: if you created the PIL Images
manually, don't forget to enable the PIL
methods to enable saving to Parquet.
Dask DataFrame parallelizes pandas to handle large datasets. It enables faster local processing with multiprocessing as well as distributed large scale processing. Dask mimics the pandas API:
import dask.dataframe as dd
from distributed import Client
from pandas_image_methods import PILMethods
dd.extensions.register_series_accessor("pil")(PILMethods)
if __name__ == "__main__":
client = Client()
df = dd.read_csv("path/to/large/dataset.csv")
df = df.repartition(npartitions=1000) # divide the processing in 1000 jobs
df["image"] = df["file_path"].pil.open()
df["image"] = df["image"].pil.rotate(90)
df["image"].head(1)
# 0 <PIL.Image.Image size=200x200>
# Name: image, dtype: object, PIL methods enabled
df.to_parquet("data_folder")
Most image datasets in Parquet format on Hugging Face are compatible with pandas-image-methods
. For example you can load the CIFAR-100 dataset:
df = pd.read_parquet("hf://datasets/uoft-cs/cifar100/cifar100/train-00000-of-00001.parquet")
df["image"] = df["image"].pil.enable()
You can also use the datasets
library, here is an example on the julien-c/impressionists dataset for painting classification:
from datasets import load_dataset
df = load_dataset("julien-c/impressionists", split="train").to_pandas()
df["image"] = df["image"].pil.enable()
Datasets created with pandas-image-methods
and saved to Parquet are also compatible with the Dataset Viewer on Hugging Face and the datasets library:
df.to_parquet("hf://datasets/username/dataset_name/train.parquet")
You can display a pandas dataframe of images in a Jupyter Notebook or on Google Colab in HTML:
from IPython.display import HTML
HTML(df.head().to_html(escape=False, formatters={"image": df.image.pil.html_formatter}))