-
-
Notifications
You must be signed in to change notification settings - Fork 481
ga_instance.best_solution() performs all solutions in instance #79
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Comments
I didn't notice the input |
@Stoops-ML hi, what do you mean here? run all the solutions mean all the generation's solutions? or just the last generated whole solution? |
Hi @whubaichuan, @Stoops-ML means that we do not have to re-calculate the fitness of the best solutions in the As @Stoops-ML mentioned, we can use the
|
@ahmedfgad hi, thanks for your reply. In my testing,
|
Thanks for your notes. For the first point, the documentation will be updated to include these details about the
For the second point, you are right. Even if |
PyGAD 2.19.0 Release Notes 1. A new `summary()` method is supported to return a Keras-like summary of the PyGAD lifecycle. 2. A new optional parameter called `fitness_batch_size` is supported to calculate the fitness function in batches. If it is assigned the value `1` or `None` (default), then the normal flow is used where the fitness function is called for each individual solution. If the `fitness_batch_size` parameter is assigned a value satisfying this condition `1 < fitness_batch_size <= sol_per_pop`, then the solutions are grouped into batches of size `fitness_batch_size` and the fitness function is called once for each batch. In this case, the fitness function must return a list/tuple/numpy.ndarray with a length equal to the number of solutions passed. #136. 3. The `cloudpickle` library (https://github.com./cloudpipe/cloudpickle) is used instead of the `pickle` library to pickle the `pygad.GA` objects. This solves the issue of having to redefine the functions (e.g. fitness function). The `cloudpickle` library is added as a dependancy in the `requirements.txt` file. #159 4. Support of assigning methods to these parameters: `fitness_func`, `crossover_type`, `mutation_type`, `parent_selection_type`, `on_start`, `on_fitness`, `on_parents`, `on_crossover`, `on_mutation`, `on_generation`, and `on_stop`. #92 #138 5. Validating the output of the parent selection, crossover, and mutation functions. 6. The built-in parent selection operators return the parent's indices as a NumPy array. 7. The outputs of the parent selection, crossover, and mutation operators must be NumPy arrays. 8. Fix an issue when `allow_duplicate_genes=True`. #39 9. Fix an issue creating scatter plots of the solutions' fitness. 10. Sampling from a `set()` is no longer supported in Python 3.11. Instead, sampling happens from a `list()`. Thanks `Marco Brenna` for pointing to this issue. 11. The lifecycle is updated to reflect that the new population's fitness is calculated at the end of the lifecycle not at the beginning. #154 (comment) 12. There was an issue when `save_solutions=True` that causes the fitness function to be called for solutions already explored and have their fitness pre-calculated. #160 13. A new instance attribute named `last_generation_elitism_indices` added to hold the indices of the selected elitism. This attribute helps to re-use the fitness of the elitism instead of calling the fitness function. 14. Fewer calls to the `best_solution()` method which in turns saves some calls to the fitness function. 15. Some updates in the documentation to give more details about the `cal_pop_fitness()` method. #79 (comment)
The best_solution() method of a PyGAD.GA() instance runs all the solutions within the instance. This seems unnecessary as the instance could save the best solution on the fly and therefore not need to run all the solutions in the instance.
The text was updated successfully, but these errors were encountered: