-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathWordVectorTraining.java
209 lines (177 loc) · 8.2 KB
/
WordVectorTraining.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
package com.example.vijay.ondevice_word2vector;
import android.content.Context;
import android.content.res.AssetManager;
import android.os.Bundle;
import android.os.Environment;
import android.os.Handler;
import android.os.Message;
import android.util.Log;
import android.widget.Toast;
import org.deeplearning4j.models.embeddings.WeightLookupTable;
import org.deeplearning4j.models.embeddings.inmemory.InMemoryLookupTable;
import org.deeplearning4j.models.embeddings.learning.impl.elements.SkipGram;
import org.deeplearning4j.models.word2vec.VocabWord;
import org.deeplearning4j.models.word2vec.Word2Vec;
import org.deeplearning4j.models.word2vec.wordstore.VocabCache;
import org.deeplearning4j.models.word2vec.wordstore.inmemory.AbstractCache;
import org.deeplearning4j.text.sentenceiterator.BasicLineIterator;
import org.deeplearning4j.text.sentenceiterator.SentenceIterator;
import org.deeplearning4j.text.tokenization.tokenizer.preprocessor.CommonPreprocessor;
import org.deeplearning4j.text.tokenization.tokenizerfactory.DefaultTokenizerFactory;
import org.deeplearning4j.text.tokenization.tokenizerfactory.TokenizerFactory;
import java.io.BufferedReader;
import java.io.File;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.List;
public class WordVectorTraining {
private static String TAG = "WordVectorTraining";
private static String DATA_PATH = Environment.getExternalStorageDirectory().toString()+"/W2V_DATAPATH/";
private Context context;
private WordVectorSaver wordVectorSaver;
private WordVectorReader wordVectorReader;
private final List<String> stopwords = new ArrayList<String>();
private final List<String> extendedStopwords = new ArrayList<String>();
private InputStream [] in_vectorStream ;
private static File[]datafile;
private Word2Vec []word2Vec = null;
/*Train all these files iteratively*/
private static String []VectorModelFile = {"vector_data1.txt" ,
"vector_data2.txt" ,
"vector_data3.txt",
"vector_data4.txt",
"vector_data5.txt",
"vector_data6.txt"
};
/*Read Exisiting word to vec model - keep this file @W2V_DATAPATH*/
// private static String []VectorModelFile = {"glove.6B.50d"};
private static final String MSG_KEY = "training";
public WordVectorTraining(Context context) throws IOException {
this.context = context;
wordVectorSaver = new WordVectorSaver(context);
wordVectorReader = new WordVectorReader(context);
AssetManager assetManager = context.getAssets();
/*Read # of data files from assest manager*/
try{
in_vectorStream = new InputStream[VectorModelFile.length];
for(int i = 0 ; i < VectorModelFile.length ; i++){
in_vectorStream[i] = assetManager.open(VectorModelFile[i]);
}
} catch (IOException e) {
e.printStackTrace();
}
/*Create Storage Directory for dumping # of model files generated from # of data files*/
if(!DATA_PATH.endsWith(File.separator)){
DATA_PATH += File.separator;
}
File datapathFiles = new File(DATA_PATH);
if(!datapathFiles.exists()){
datapathFiles.mkdir();
}
datafile = new File[VectorModelFile.length];
boolean status = false;
for(int i = 0; i<VectorModelFile.length ; i++){
datafile[i] = new File(DATA_PATH+VectorModelFile[i]);
if(!datafile[i].exists()){ /*Create # of model files*/
datafile[i].createNewFile();
status = true;
}
}
if(status){
wordVectorSaver.resetSharedpreferences();
}else{/*Read Exisiting word to vec model - kept @W2V_DATAPATH*/
wordVectorSaver.setSharedpreferences();
}
/*Load Stopwords*/
InputStream stop = context.getResources().openRawResource(R.raw.stopwords);
InputStream exstop = context.getResources().openRawResource(R.raw.extended_stopwords);
BufferedReader br = new BufferedReader(new InputStreamReader(stop));
String line;
while((line = br.readLine()) != null){
stopwords.add(line);
}
br.close();
br = new BufferedReader(new InputStreamReader(exstop));
while((line = br.readLine()) != null){
extendedStopwords.add(line);
}
br.close();
}
private final Handler mHandler = new Handler(){
public void handleMessage(Message msg){
Bundle bundle = msg.getData();
String string = bundle.getString(MSG_KEY);
Toast toast = Toast.makeText(context,string,Toast.LENGTH_LONG);
}
};
private final Runnable mMessageSender = new Runnable() {
@Override
public void run() {
Message msg = mHandler.obtainMessage();
Bundle bundle = new Bundle();
bundle.putString(MSG_KEY,"Training In Progress");
msg.setData(bundle);
mHandler.sendMessage(msg);
}
};
public void trainW2V(){
SentenceIterator iterator = null;
TokenizerFactory tokenizerFactory = null;
word2Vec = new Word2Vec[in_vectorStream.length];
// VocabCache<VocabWord> cache = null;
// WeightLookupTable<VocabWord> table = null;
if(wordVectorSaver.getSavedModelState() == false){
new Thread(mMessageSender).start();
for(int i = 0 ; i < in_vectorStream.length ; i++) { /*Train model iteratively with dataset[]*/
iterator = new BasicLineIterator(in_vectorStream[i]);
tokenizerFactory = new DefaultTokenizerFactory();
tokenizerFactory.setTokenPreProcessor(new CommonPreprocessor());
Log.d(TAG, "Building Model");
// manual creation of VocabCache and WeightLookupTable usually isn't necessary
// but in this case we'll need them
// cache = new AbstractCache<>();
// table = new InMemoryLookupTable.Builder<VocabWord>()
// .vectorLength(100)
// .useAdaGrad(false)
// .cache(cache).build();
word2Vec[i] = new Word2Vec.Builder()
.minWordFrequency(10)
.iterations(1)
.layerSize(100)
.seed(42)
.windowSize(5)
.epochs(1)
.batchSize(10)
.stopWords(stopwords)
.stopWords(extendedStopwords)
.iterate(iterator)
.tokenizerFactory(tokenizerFactory)
// .lookupTable(table)
// .vocabCache(cache)
.elementsLearningAlgorithm(new SkipGram<VocabWord>())
.build();
word2Vec[i].fit();
wordVectorSaver.writeWord2VecModel(word2Vec[i], datafile[i]);
}
wordVectorSaver.setSharedpreferences();
}else{ /*Only read model */
for(int i = 0 ; i < datafile.length ; i++){
word2Vec[i] = wordVectorReader.readWord2VecModel(datafile[i]);
/*Uptraining Process*/
// iterator = new BasicLineIterator(in_vectorStream[i]);
// tokenizerFactory = new DefaultTokenizerFactory();
// tokenizerFactory.setTokenPreProcessor(new CommonPreprocessor());
// word2Vec[i].setTokenizerFactory(tokenizerFactory);
// word2Vec[i].setSentenceIterator(iterator);
}
}
}
public Word2Vec[] getW2VInstance(){
if(word2Vec.length > 0){
return word2Vec;
}
return null;
}
}