Skip to content

Successfully registered all kernels from shared library: NOT_SUPPORTED #8870

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
ismukhin opened this issue Mar 1, 2025 · 3 comments
Open
Assignees
Labels
module: kernels Issues related to kernel libraries and utilities, and code under kernels/ triaged This issue has been looked at a team member, and triaged and prioritized into an appropriate module

Comments

@ismukhin
Copy link

ismukhin commented Mar 1, 2025

🐛 Describe the bug

#include <iostream>
#include <cassert>
#include <executorch/extension/module/module.h>
#include <executorch/extension/tensor/tensor.h>

using namespace ::executorch::extension;

int main() {
  Module module("mv2_xnnpack.pte");
  const auto error = module.load();

  assert(module.is_loaded());
  float input[1 * 3 * 224 * 224];
  auto tensor = from_blob(input, {1, 3, 224, 224});
  const auto result = module.execute("forward", tensor);
  if (result.ok()) {
    // Retrieve the output data.
    std::cout << "HERE" << std::endl;
    const auto output = result->at(0).toTensor().const_data_ptr<float>();
  }
}

Build with CMake:

cmake_minimum_required(VERSION 3.21)

project(exec)

set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_EXTENSIONS OFF)


set(executorch_DIR "executorch/build1/executorch_install/lib/cmake/ExecuTorch")

find_package(executorch REQUIRED)

set(_common_compile_options -Wno-deprecated-declarations)

add_executable(exec main.cpp)

include_directories("${CMAKE_CURRENT_SOURCE_DIR}")

target_link_libraries(
    exec PRIVATE
  ${EXECUTORCH_LIBRARIES}
)

target_link_options(exec PRIVATE -Wl,--whole-archive,--allow-multiple-definition)

message(STATUS ${EXECUTORCH_LIBRARIES})
message(STATUS ${EXECUTORCH_INCLUDE_DIRS})
message(STATUS ${libs})
message(STATUS ${EXECUTORCH_LIBRARY})

Executorch build command:

cmake -DEXECUTORCH_BUILD_EXTENSION_DATA_LOADER=ON \ 
-DEXECUTORCH_BUILD_EXTENSION_MODULE=ON \
-DEXECUTORCH_BUILD_EXTENSION_RUNNER_UTIL=ON \
-DEXECUTORCH_BUILD_EXTENSION_TENSOR=ON \
-DEXECUTORCH_BUILD_KERNELS_CUSTOM=ON \
-DEXECUTORCH_BUILD_DEVTOOLS=ON \
-DBUILD_EXECUTORCH_PORTABLE_OPS=ON \
-DEXECUTORCH_BUILD_PYBIND=ON \
-DEXECUTORCH_BUILD_XNNPACK=ON ../ && \
cmake --build . -j$(nproc --all) && \

cmake --install . --prefix executorch_install

Get the error:

D 00:00:00.000184 executorch:operator_registry.cpp:92] Successfully registered all kernels from shared library: NOT_SUPPORTED
E 00:00:00.000222 executorch:operator_registry.cpp:85] Re-registering aten::sym_size.int, from NOT_SUPPORTED
E 00:00:00.000232 executorch:operator_registry.cpp:86] key: (null), is_fallback: true
F 00:00:00.000233 executorch:operator_registry.cpp:106] In function register_kernels(), assert failed (false): Kernel registration failed with error 18, see error log for details.
Aborted (core dumped)

Code of model export:

import torch
import torchvision.models as models
from torchvision.models.mobilenetv2 import MobileNet_V2_Weights
from executorch.backends.xnnpack.partition.xnnpack_partitioner import XnnpackPartitioner
from executorch.exir import to_edge_transform_and_lower

mobilenet_v2 = models.mobilenetv2.mobilenet_v2(weights=MobileNet_V2_Weights.DEFAULT).eval()
sample_inputs = (torch.randn(1, 3, 224, 224), )

et_program = to_edge_transform_and_lower(
    torch.export.export(mobilenet_v2, sample_inputs),
    #partitioner=[XnnpackPartitioner()],
).to_executorch()

with open("mv2_xnnpack.pte", "wb") as file:
    et_program.write_to_file(file)


from pathlib import Path
from executorch.runtime import Verification, Runtime, Program, Method

et_runtime: Runtime = Runtime.get()
program: Program = et_runtime.load_program(
    Path("mv2_xnnpack.pte"),
    verification=Verification.Minimal,
)
print("Program methods:", program.method_names)
forward: Method = program.load_method("forward")

inputs = (torch.ones(1, 3, 224, 224),)
outputs = forward.execute(inputs)
print(f"Ran forward({inputs})")
print(f"  outputs: {outputs}")

Versions

Collecting environment information...
PyTorch version: 2.6.0+cpu
Is debug build: False
CUDA used to build PyTorch: Could not collect
ROCM used to build PyTorch: N/A

OS: Ubuntu 24.04.2 LTS (x86_64)
GCC version: (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
Clang version: 18.1.3 (1ubuntu1)
CMake version: version 3.31.6
Libc version: glibc-2.39

Python version: 3.10.0 (default, Mar  3 2022, 09:58:08) [GCC 7.5.0] (64-bit runtime)
Python platform: Linux-5.15.167.4-microsoft-standard-WSL2-x86_64-with-glibc2.39
Is CUDA available: False
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: N/A
GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4070 SUPER
Nvidia driver version: 572.42
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        39 bits physical, 48 bits virtual
Byte Order:                           Little Endian
CPU(s):                               20
On-line CPU(s) list:                  0-19
Vendor ID:                            GenuineIntel
Model name:                           Intel(R) Core(TM) i5-14600KF
CPU family:                           6
Model:                                183
Thread(s) per core:                   2
Core(s) per socket:                   10
Socket(s):                            1
Stepping:                             1
BogoMIPS:                             6988.79
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology tsc_reliable nonstop_tsc cpuid pni pclmulqdq vmx ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves avx_vnni umip waitpkg gfni vaes vpclmulqdq rdpid movdiri movdir64b fsrm md_clear serialize flush_l1d arch_capabilities
Virtualization:                       VT-x
Hypervisor vendor:                    Microsoft
Virtualization type:                  full
L1d cache:                            480 KiB (10 instances)
L1i cache:                            320 KiB (10 instances)
L2 cache:                             20 MiB (10 instances)
L3 cache:                             24 MiB (1 instance)
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Not affected
Vulnerability Reg file data sampling: Mitigation; Clear Register File
Vulnerability Retbleed:               Mitigation; Enhanced IBRS
Vulnerability Spec rstack overflow:   Not affected
Vulnerability Spec store bypass:      Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected

Versions of relevant libraries:
[pip3] executorch==0.5.0a0+1bc0699
[pip3] numpy==2.0.0
[pip3] torch==2.6.0+cpu
[pip3] torchao==0.8.0+gitebc43034
[pip3] torchaudio==2.6.0+cpu
[pip3] torchsr==1.0.4
[pip3] torchvision==0.21.0+cpu
[conda] executorch                0.5.0a0+1bc0699          pypi_0    pypi
[conda] numpy                     2.0.0                    pypi_0    pypi
[conda] torch                     2.6.0+cpu                pypi_0    pypi
[conda] torchao                   0.8.0+gitebc43034          pypi_0    pypi
[conda] torchaudio                2.6.0+cpu                pypi_0    pypi
[conda] torchsr                   1.0.4                    pypi_0    pypi
[conda] torchvision               0.21.0+cpu               pypi_0    pypi

I try to link builded executorch to my project with find_package, but get the folowing error when try start inference. But if I use add_subdirectory(executorch) like:

cmake_minimum_required(VERSION 3.21)

project(exec)

set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_EXTENSIONS OFF)

set(_common_compile_options -Wno-deprecated-declarations)

set(EXECUTORCH_BUILD_EXECUTOR_RUNNER ON)
set(EXECUTORCH_BUILD_EXTENSION_DATA_LOADER ON)
set(EXECUTORCH_BUILD_EXTENSION_MODULE ON)
set(EXECUTORCH_BUILD_EXTENSION_RUNNER_UTIL ON)
set(EXECUTORCH_BUILD_EXTENSION_TENSOR ON)
set(EXECUTORCH_BUILD_XNNPACK ON)

add_subdirectory("executorch")

add_executable(exec main.cpp)

target_link_libraries(
  exec
  PRIVATE executorch
          extension_module_static
          extension_tensor
          portable_kernels
          portable_ops_lib
          executorch_core
          #optimized_native_cpu_ops_lib
          xnnpack_backend)
target_link_options(exec PRIVATE -Wl,--whole-archive,--allow-multiple-definition)

It works for me, but in my project I need to build executorch outside my project

cc @larryliu0820 @manuelcandales

@guangy10 guangy10 added module: kernels Issues related to kernel libraries and utilities, and code under kernels/ triaged This issue has been looked at a team member, and triaged and prioritized into an appropriate module labels Mar 1, 2025
@github-project-automation github-project-automation bot moved this to To triage in ExecuTorch Core Mar 1, 2025
@larryliu0820
Copy link
Contributor

Or actually - @GregoryComer can you comment on this one?

@larryliu0820
Copy link
Contributor

target_link_libraries(
    exec PRIVATE
  ${EXECUTORCH_LIBRARIES}
)

Instead of linking all the libraries, can you link individual libraries?

@ismukhin
Copy link
Author

ismukhin commented Mar 8, 2025

EXECUTORCH_LIBRARIES has this variables in my build:

executorch
executorch_core
portable_kernels
extension_data_loader
portable_ops_lib
extension_module
extension_module_static
extension_tensor
extension_threadpool
xnnpack_backend
XNNPACK
microkernels-prod
cpuinfo
pthreadpool
optimized_kernels
cpublas
eigen_blas
optimized_ops_lib
optimized_native_cpu_ops_lib

I did this in cmake and this works for me:

list(REMOVE_ITEM EXECUTORCH_LIBRARIES extension_module)
list(REMOVE_ITEM EXECUTORCH_LIBRARIES optimized_kernels)
list(REMOVE_ITEM EXECUTORCH_LIBRARIES optimized_ops_lib)
list(REMOVE_ITEM EXECUTORCH_LIBRARIES optimized_native_cpu_ops_lib)

But as I understand it, the library extension_module is the same thing as extension_module_static, only dynamic and when linking it without static lib, the following error appears:

E 00:00:00.000204 executorch:operator_registry.cpp:85] Re-registering aten::sym_size.int, from NOT_SUPPORTED
E 00:00:00.000224 executorch:operator_registry.cpp:86] key: (null), is_fallback: true
F 00:00:00.000225 executorch:operator_registry.cpp:106] In function register_kernels(), assert failed (false): Kernel registration failed with error 18, see error log for details.
Aborted (core dumped)

How can this be explained?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
module: kernels Issues related to kernel libraries and utilities, and code under kernels/ triaged This issue has been looked at a team member, and triaged and prioritized into an appropriate module
Projects
Status: To triage
Development

No branches or pull requests

4 participants