-
Notifications
You must be signed in to change notification settings - Fork 527
/
Copy pathschema.py
308 lines (220 loc) · 5.39 KB
/
schema.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-strict
from dataclasses import dataclass
from enum import IntEnum
from typing import List, Optional, Union
from executorch.exir.backend.compile_spec_schema import CompileSpec
from executorch.exir.scalar_type import ScalarType
@dataclass
class AllocationDetails:
memory_id: int
# Low 32 bits
memory_offset_low: int
# High 32 bits (typically zero)
memory_offset_high: int
@property
def memory_offset(self) -> int:
return self.memory_offset_low | (self.memory_offset_high << 32)
@dataclass
class OptionalTensorList:
items: List[int]
class TensorShapeDynamism(IntEnum):
"""
Check program.fbs for explanations of this enum.
"""
STATIC = 0
DYNAMIC_BOUND = 1
DYNAMIC_UNBOUND = 2
class TensorDataLocation(IntEnum):
SEGMENT = 0
EXTERNAL = 1
@dataclass
class ExtraTensorInfo:
"""
Check program.fbs for explanations of this enum.
"""
mutable_data_segments_idx: int = 0
fully_qualified_name: Optional[str] = None
location: TensorDataLocation = TensorDataLocation.SEGMENT
@dataclass
class Tensor:
scalar_type: ScalarType
storage_offset: int
sizes: List[int]
dim_order: List[int]
requires_grad: bool
layout: int
data_buffer_idx: int
allocation_info: Optional[AllocationDetails]
# check program.fbs for explanations.
shape_dynamism: TensorShapeDynamism
extra_tensor_info: Optional[ExtraTensorInfo] = None
@dataclass
class Null:
pass
@dataclass
class Int:
int_val: int
@dataclass
class Bool:
bool_val: bool
@dataclass
class Double:
double_val: Union[float, str]
def __init__(self, double_val: float) -> None:
if double_val == float("inf"):
self.double_val = "inf"
elif double_val == float("-inf"):
self.double_val = "-inf"
else:
self.double_val = double_val
def __post_init__(self) -> None:
if isinstance(self.double_val, str):
assert self.double_val in ["inf", "-inf"]
else:
assert isinstance(self.double_val, float)
assert not self.double_val == float("inf")
assert not self.double_val == float("-inf")
@dataclass
class String:
string_val: str
@dataclass
class ContainerMetadata:
encoded_inp_str: str
encoded_out_str: str
@dataclass
class IntList:
items: List[int]
@dataclass
class DoubleList:
items: List[float]
@dataclass
class BoolList:
items: List[bool]
@dataclass
class TensorList:
items: List[int]
KernelTypes = Union[
Int,
Double,
Bool,
String,
Tensor,
IntList,
BoolList,
DoubleList,
TensorList,
Null,
OptionalTensorList,
]
@dataclass
class EValue:
# Union types must be specified as strings so DataclassEncoder can see them.
val: "KernelTypes"
@dataclass
class Buffer:
storage: bytes
@dataclass
class BackendDelegateInlineData:
data: bytes
@dataclass
class KernelCall:
op_index: int
args: List[int]
@dataclass
class DelegateCall:
delegate_index: int
args: List[int]
@dataclass
class MoveCall:
move_from: int
move_to: int
@dataclass
class JumpFalseCall:
cond_value_index: int
destination_instruction: int
@dataclass
class FreeCall:
value_index: int
InstructionArguments = Union[
KernelCall,
DelegateCall,
MoveCall,
JumpFalseCall,
FreeCall,
]
@dataclass
class Instruction:
instr_args: "InstructionArguments"
@dataclass
class Frame:
filename: str
lineno: int
name: str
context: str
@dataclass
class FrameList:
items: List[Frame]
class DataLocation(IntEnum):
INLINE = 0
SEGMENT = 1
@dataclass
class BackendDelegateDataReference:
location: DataLocation
index: int
@dataclass
class BackendDelegate:
id: str
processed: BackendDelegateDataReference
compile_specs: List[CompileSpec]
@dataclass
class Chain:
inputs: List[int]
outputs: List[int]
instructions: List[Instruction]
stacktrace: Optional[List[FrameList]]
@dataclass
class Operator:
name: str
overload: str
@dataclass
class ExecutionPlan:
name: str
container_meta_type: ContainerMetadata
values: List[EValue]
inputs: List[int]
outputs: List[int]
chains: List[Chain]
operators: List[Operator]
delegates: List[BackendDelegate]
# the list index is memory buffer id, the value is the memory buffer size.
# memory_buffer_id == 0 is special and is for constant memory buffer.
# Runtime should use the len(constant_buffer) as the ground truch of
# constant memory buffer size, and ignore non_const_buffer_sizes[0].
non_const_buffer_sizes: List[int]
@dataclass
class DataSegment:
offset: int
size: int
@dataclass
class SubsegmentOffsets:
segment_index: int
offsets: List[int]
@dataclass
class NamedData:
key: str
segment_index: int
@dataclass
class Program:
version: int
execution_plan: List[ExecutionPlan]
constant_buffer: List[Buffer]
backend_delegate_data: List[BackendDelegateInlineData]
segments: List[DataSegment]
constant_segment: SubsegmentOffsets
mutable_data_segments: Optional[List[SubsegmentOffsets]] = None
named_data: Optional[List[NamedData]] = None