-
Notifications
You must be signed in to change notification settings - Fork 528
/
Copy pathquantize_io_pass.py
264 lines (229 loc) · 10 KB
/
quantize_io_pass.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree
import logging
from typing import Any, Dict, List, Optional, Union
import numpy as np
import torch
from executorch.exir import EdgeProgramManager
from executorch.exir.dialects._ops import ops as exir_ops
from executorch.exir.pass_base import ExportPass
from executorch.exir.tensor import scalar_type_enum
from torch.fx.passes.infra.pass_base import PassResult
logger = logging.getLogger(__name__)
def quantize_input(
exported_program, input_index, qparams: Optional[Dict[str, Any]] = None
):
"""
Modify the program to expect quantized input at given index. The input is expected
to be quantizing this input as the first step. Must be called before
permute_input_layout. Returns the scale, zero point, qmin, qmax, and dtype of the
expected quantization.
"""
graph = exported_program.graph_module.graph
name = exported_program.graph_signature.user_inputs[input_index]
placeholders = [n for n in graph.nodes if n.op == "placeholder" and n.name == name]
assert placeholders
target_placeholder = placeholders[0]
if len(target_placeholder.users) != 1:
raise ValueError(f"Input {input_index} has more than one users")
quantize = next(iter(target_placeholder.users))
if (
quantize.target
!= exir_ops.edge.quantized_decomposed.quantize_per_tensor.default
):
raise ValueError(f"Input {input_index} is not used by a quantize op")
# If user specified qparams are different from args of quantize op, we do requantization instead of eliminating quantize op
need_requant = False
if qparams is not None:
assert all(
qparam in qparams for qparam in ["scale", "zp", "dtype"]
), "dtype/scale/zp must be specified in qparam for input requantization"
if qparams["dtype"] != quantize.args[5]:
if any(
dtype
not in [torch.int8, torch.uint8, torch.bool, torch.int16, torch.uint16]
for dtype in [qparams["dtype"], quantize.args[5]]
):
raise ValueError(
f"Only limited data types are supported for requantization, but got {qparams['dtype']} -> {quantize.args[5]}"
)
need_requant = True
elif (
not np.isclose(qparams["scale"], quantize.args[1])
or qparams["zp"] != quantize.args[2]
):
need_requant = True
if need_requant:
assert qparams is not None
dtype = qparams["dtype"]
qmin = torch.iinfo(dtype).min
qmax = torch.iinfo(dtype).max
scale = qparams["scale"]
zero_point = qparams["zp"]
quant_args = (scale, zero_point, qmin, qmax, dtype)
logger.info(
f"Modifying program to requantize quantized input at index {input_index}"
)
logger.info(f"Quantization parameters: {quant_args}")
with exported_program.graph_module.graph.inserting_before(quantize):
input_dequant = exported_program.graph_module.graph.call_function(
exir_ops.edge.quantized_decomposed.dequantize_per_tensor.default,
args=(
target_placeholder,
*quant_args,
),
)
input_dequant.meta["input_qparams"] = [
{
"scale": scale,
"zero_point": zero_point,
"qmin": qmin,
"qmax": qmax,
"dtype": dtype,
}
]
input_dequant.meta["val"] = quantize.meta["val"].to(torch.float32)
target_placeholder.meta["val"] = target_placeholder.meta["val"].to(dtype)
quantize.replace_input_with(target_placeholder, input_dequant)
else:
quant_args = quantize.args[1:]
logger.info(f"Modifying program to take quantized input at index {input_index}")
logger.info(f"Quantization parameters: {quant_args}")
target_placeholder.meta["val"] = (
exir_ops.edge.quantized_decomposed.quantize_per_tensor.default(
target_placeholder.meta["val"], *quant_args
)
)
quantize.replace_all_uses_with(quantize.args[0])
exported_program.graph_module.graph.eliminate_dead_code()
return quant_args
def quantize_output(exported_program, output_index):
"""
Modify the program to produce quantized output at given index. The model is expected
to be dequantizing this output as the last step. Must be called before
permute_output_layout. Returns the scale, zero point, qmin, qmax, and dtype of the
output quantization.
"""
graph = exported_program.graph_module.graph
outputs = [n for n in graph.nodes if n.op == "output"]
if len(outputs) != 1:
raise NotImplementedError("Only 1 output node is supported")
output_node = outputs[0]
output_list = list(output_node.args[0])
if output_index >= len(output_list):
raise ValueError(
f"{len(output_list)} outputs available, "
+ f"output index out of bounds: {output_index}"
)
target_output = output_list[output_index]
if (
target_output.target
!= exir_ops.edge.quantized_decomposed.dequantize_per_tensor.default
):
raise ValueError("Output {output_index} is not a dequantize op")
dequant = target_output
output_list[output_index] = dequant.args[0]
output_node.args = (output_list,)
dequant_args = dequant.args[1:]
graph.eliminate_dead_code()
logger.info(
f"Modifying program to produce quantized output at index {output_index}"
)
logger.info(f"Dequantization parameters: {dequant_args}")
return dequant_args
def get_config_method_name(
prefix: Optional[str] = "forward",
arg_type: str = "input",
index: int = 0,
key: str = "scale",
):
if prefix is None:
prefix = ""
else:
prefix = prefix + "_"
assert arg_type in ["input", "output"], "arg_type must be either input or output"
assert index >= 0, "index must be non-negative"
assert key in [
"scale",
"zp",
"quant_min",
"quant_max",
"dtype",
], "key must be one of scale, zp, quant_min, quant_max, dtype"
return f"{prefix}{arg_type}{index}_{key}"
class QuantizeInputs(ExportPass):
def __init__(
self,
edge_program_manager: EdgeProgramManager,
quantized_inputs_idx: Union[Dict[int, Dict[str, Any]], List[int]],
method_name: Optional[str] = None,
):
super().__init__()
self.edge_program_manager = edge_program_manager
self.quantized_inputs_idx_dict = {}
if isinstance(quantized_inputs_idx, dict):
self.quantized_inputs_idx_dict = quantized_inputs_idx
else:
for idx in quantized_inputs_idx:
self.quantized_inputs_idx_dict[idx] = None
self.param_prefix_name = method_name
def call(self, graph_module: torch.fx.GraphModule):
for i, qparams in self.quantized_inputs_idx_dict.items():
quant_args = quantize_input(
self.edge_program_manager.exported_program(), i, qparams
)
if not self.edge_program_manager._config_methods:
self.edge_program_manager._config_methods = {}
self.edge_program_manager._config_methods[
get_config_method_name(self.param_prefix_name, "input", i, "scale")
] = quant_args[0]
self.edge_program_manager._config_methods[ # pyre-ignore
get_config_method_name(self.param_prefix_name, "input", i, "zp")
] = quant_args[1]
self.edge_program_manager._config_methods[
get_config_method_name(self.param_prefix_name, "input", i, "quant_min")
] = quant_args[2]
self.edge_program_manager._config_methods[
get_config_method_name(self.param_prefix_name, "input", i, "quant_max")
] = quant_args[3]
self.edge_program_manager._config_methods[
get_config_method_name(self.param_prefix_name, "input", i, "dtype")
] = scalar_type_enum(quant_args[4])
return PassResult(graph_module, True)
class QuantizeOutputs(ExportPass):
def __init__(
self,
edge_program_manager: EdgeProgramManager,
quantized_outputs_idx_list: List[int],
method_name: Optional[str] = None,
):
super().__init__()
self.edge_program_manager = edge_program_manager
self.quantized_outputs_idx_list = quantized_outputs_idx_list
self.param_prefix_name = method_name
def call(self, graph_module: torch.fx.GraphModule):
for i in self.quantized_outputs_idx_list:
dequant_args = quantize_output(
self.edge_program_manager.exported_program(), i
) # noqa F841
if not self.edge_program_manager._config_methods:
self.edge_program_manager._config_methods = {}
self.edge_program_manager._config_methods[
get_config_method_name(self.param_prefix_name, "output", i, "scale")
] = dequant_args[0]
self.edge_program_manager._config_methods[ # pyre-ignore
get_config_method_name(self.param_prefix_name, "output", i, "zp")
] = dequant_args[1]
self.edge_program_manager._config_methods[
get_config_method_name(self.param_prefix_name, "output", i, "quant_min")
] = dequant_args[2]
self.edge_program_manager._config_methods[
get_config_method_name(self.param_prefix_name, "output", i, "quant_max")
] = dequant_args[3]
self.edge_program_manager._config_methods[
get_config_method_name(self.param_prefix_name, "output", i, "dtype")
] = scalar_type_enum(dequant_args[4])
return PassResult(graph_module, True)