ExecuTorch supports both iOS and macOS via Objective-C, Swift, and C++. ExecuTorch also provides backends to leverage Core ML and Metal Performance Shaders (MPS) for hardware-accelerated execution on Apple platforms.
The ExecuTorch Runtime for iOS and macOS is distributed as a collection of prebuilt .xcframework binary targets. These targets are compatible with both iOS and macOS devices and simulators and are available in both release and debug modes:
executorch
- Main Runtime componentsbackend_coreml
- Core ML backendbackend_mps
- MPS backendbackend_xnnpack
- XNNPACK backendkernels_custom
- Custom kernels for LLMskernels_optimized
- Optimized kernelskernels_portable
- Portable kernels (naive implementation used as a reference)kernels_quantized
- Quantized kernels
Link your binary with the ExecuTorch runtime and any backends or kernels used by the exported ML model. It is recommended to link the core runtime to the components that use ExecuTorch directly, and link kernels and backends against the main app target.
Note: To access logs, link against the Debug build of the ExecuTorch runtime, i.e., the executorch_debug
framework. For optimal performance, always link against the Release version of the deliverables (those without the _debug
suffix), which have all logging overhead removed.
The prebuilt ExecuTorch runtime, backend, and kernels are available as a Swift PM package.
In Xcode, go to File > Add Package Dependencies
. Paste the URL of the ExecuTorch repo into the search bar and select it. Make sure to change the branch name to the desired ExecuTorch version in format "swiftpm-", (e.g. "swiftpm-0.6.0"), or a branch name in format "swiftpm-.<year_month_date>" (e.g. "swiftpm-0.7.0-20250401") for a nightly build on a specific date.
Then select which ExecuTorch framework should link against which target.
Click the screenshot below to watch the demo video on how to add the package and run a simple ExecuTorch model on iOS.

Add a package and target dependencies on ExecuTorch to your package file like this:
// swift-tools-version:5.9
import PackageDescription
let package = Package(
name: "YourPackageName",
platforms: [
.iOS(.v17),
.macOS(.v10_15),
],
products: [
.library(name: "YourPackageName", targets: ["YourTargetName"]),
],
dependencies: [
// Use "swiftpm-<version>.<year_month_day>" branch name for a nightly build.
.package(url: "https://github.com./pytorch/executorch.git", branch: "swiftpm-0.6.0")
],
targets: [
.target(
name: "YourTargetName",
dependencies: [
.product(name: "executorch", package: "executorch"),
.product(name: "backend_xnnpack", package: "executorch"),
.product(name: "kernels_portable", package: "executorch"),
// Add other backends and kernels as needed.
]),
]
)
Then check if everything works correctly:
cd path/to/your/package
swift package resolve
# or just build it
swift build
Another way to integrate the ExecuTorch runtime is to build the necessary components from sources locally and link against them. This is useful when customizing the runtime.
- Install Xcode 15+ and Command Line Tools:
xcode-select --install
- Clone ExecuTorch:
git clone -b viable/strict https://github.com./pytorch/executorch.git && cd executorch
- Set up Python 3.10+ and activate a virtual environment:
python3 -m venv .venv && source .venv/bin/activate && ./install_requirements.sh
- Install the required dependencies, including those needed for the backends like Core ML or MPS. Choose one, or both:
# ExecuTorch with xnnpack and CoreML backend
./backends/apple/coreml/scripts/install_requirements.sh
./install_executorch.sh --pybind coreml xnnpack
# ExecuTorch with xnnpack and MPS backend
./backends/apple/mps/install_requirements.sh
./install_executorch.sh --pybind mps xnnpack
- Install CMake:
Download the macOS binary distribution from the CMake website, open the .dmg
file, move CMake.app
to the /Applications
directory, and then run the following command to install the CMake command-line tools:
sudo /Applications/CMake.app/Contents/bin/cmake-gui --install
- Use the provided script to build .xcframeworks:
./scripts/build_apple_frameworks.sh --help
For example, the following command will build the ExecuTorch Runtime along with all available kernels and backends for the Apple platform in both Release and Debug modes:
./scripts/build_apple_frameworks.sh --Release --Debug --coreml --mps --xnnpack --custom --optimized --portable --quantized
After the build finishes successfully, the resulting frameworks can be found in the cmake-out
directory.
Copy them to your project and link them against your targets.
ExecuTorch initializes its backends and kernels (operators) during app startup by registering them in a static dictionary. If you encounter errors like "unregistered kernel" or "unregistered backend" at runtime, you may need to explicitly force-load certain components. Use the -all_load
or -force_load
linker flags in your Xcode build configuration to ensure components are registered early.
Here's an example of a Xcode configuration file (.xcconfig
):
ET_PLATFORM[sdk=iphonesimulator*] = simulator
ET_PLATFORM[sdk=iphoneos*] = ios
ET_PLATFORM[sdk=macos*] = macos
OTHER_LDFLAGS = $(inherited) \
-force_load $(BUILT_PRODUCTS_DIR)/libexecutorch_debug_$(ET_PLATFORM).a \
-force_load $(BUILT_PRODUCTS_DIR)/libbackend_coreml_$(ET_PLATFORM).a \
-force_load $(BUILT_PRODUCTS_DIR)/libbackend_mps_$(ET_PLATFORM).a \
-force_load $(BUILT_PRODUCTS_DIR)/libbackend_xnnpack_$(ET_PLATFORM).a \
-force_load $(BUILT_PRODUCTS_DIR)/libkernels_optimized_$(ET_PLATFORM).a \
-force_load $(BUILT_PRODUCTS_DIR)/libkernels_quantized_$(ET_PLATFORM).a
Note: In the example above, we link against the Debug version of the ExecuTorch runtime (libexecutorch_debug
) to preserve the logs. Normally, that does not impact the performance too much. Nevertheless, remember to link against the release version of the runtime (libexecutorch
) for the best performance and no logs.
You can assign such a config file to your target in Xcode:
- Add the
.xcconfig
file to your project. - Navigate to the project’s Info tab.
- Select the configuration file in the build configurations for Release (or Debug) mode.
ExecuTorch provides native Objective-C APIs, automatically bridged to Swift, for interacting with the runtime. These APIs act as wrappers around the core C++ components found in extension/tensor and extension/module, offering a more idiomatic experience for Apple platform developers.
Note: These Objective-C/Swift APIs are currently experimental and subject to change.
Once linked against the executorch
framework, you can import the necessary components.
Objective-C (Objective-C++):
// Import the main umbrella header for Module/Tensor/Value wrappers.
#import <ExecuTorch/ExecuTorch.h>
// If using C++ directly alongside Objective-C++, you might still need C++ headers.
#import <executorch/extension/module/module.h>
#import <executorch/extension/tensor/tensor.h>
Swift:
import ExecuTorch
Here's a concise example demonstrating how to load a model, prepare input, run inference, and process output using the Objective-C and Swift API. Imagine you have a MobileNet v3 model (mv3.pte
) that takes a [1, 3, 224, 224]
float tensor as input and outputs logits.
Objective-C:
NSString *modelPath = [[NSBundle mainBundle] pathForResource:@"mv3" ofType:@"pte"];
// Create a module with the model file path. Nothing gets loaded into memory just yet.
ExecuTorchModule *module = [[ExecuTorchModule alloc] initWithFilePath:modelPath];
NSError *error; // Optional error output argument to learn about failures.
// Force-load the program and 'forward' method. Otherwise, it's loaded at the first execution.
[module loadMethod:@"forward" error:&error];
float *imageBuffer = ...; // Existing image buffer.
// Create an input tensor referencing the buffer and assuming the given shape and data type.
ExecuTorchTensor *inputTensor = [[ExecuTorchTensor alloc] initWithBytesNoCopy:imageBuffer
shape:@[@1, @3, @224, @224]
dataType:ExecuTorchDataTypeFloat];
// Execute the 'forward' method with the given input tensor and get output values back.
NSArray<ExecuTorchValue *> *outputs = [module forwardWithTensor:inputTensor error:&error];
// Get the first output value assuming it's a tensor.
ExecuTorchTensor *outputTensor = outputs.firstObject.tensor;
// Access the output tensor data.
[outputTensor bytesWithHandler:^(const void *pointer, NSInteger count, ExecuTorchDataType dataType) {
float *logits = (float *)pointer;
// Use logits...
}];
Swift:
let modelPath = Bundle.main.path(forResource: "mv3", ofType: "pte")!
// Create a module with the model file path. Nothing gets loaded into memory just yet.
let module = Module(filePath: modelPath)
// Force-load the program and 'forward' method. Otherwise, it's loaded at the first execution.
try module.load("forward")
let imageBuffer: UnsafeMutableRawPointer = ... // Existing image buffer
// Create an input tensor referencing the buffer and assuming the given shape and data type.
let inputTensor = Tensor(
bytesNoCopy: imageBuffer,
shape: [1, 3, 224, 224],
dataType: .float
)
// Execute the 'forward' method with the given input tensor and get output values back.
let outputs = try module.forward(inputTensor)
// Get the first output value assuming it's a tensor.
if let outputTensor = outputs.first?.tensor {
// Access the output tensor data.
outputTensor.bytes { pointer, count, dataType in
// Copy the tensor data into logits array for easier access.
let logits = Array(UnsafeBufferPointer(
start: pointer.assumingMemoryBound(to: Float.self),
count: count
))
// Use logits...
}
}
The Tensor
class (exposed as ExecuTorchTensor
in Objective-C) represents a multi-dimensional array of elements (such as floats or ints) and includes metadata like shape (dimensions) and data type. Tensors are used to feed inputs to a model and retrieve outputs, or for any computation you need to do on raw data. You can create tensors from simple arrays of numbers, inspect their properties, read or modify their contents, and even reshape or copy them.
- dataType: The element type (e.g.,
.float
,.int
,.byte
). - shape: An array of
NSNumber
describing the size of each dimension. - count: The total number of elements.
- strides: The jump in memory needed to advance one element along each dimension.
- dimensionOrder: The order of dimensions in memory.
- shapeDynamism: Indicates if the tensor shape can change (
.static
,.dynamicBound
,.dynamicUnbound
).
You can create tensors in various ways:
From existing memory buffers:
init(bytesNoCopy:shape:dataType:...)
: Creates a tensor that references an existing memory buffer without copying. The buffer's lifetime must exceed the tensor's.init(bytes:shape:dataType:...)
: Creates a tensor by copying data from a memory buffer.
From NSData
/ Data
:
init(data:shape:dataType:...)
: Creates a tensor using anNSData
object, referencing its bytes without copying.
From scalar arrays:
init(_:shape:dataType:...)
: Creates a tensor from an array ofNSNumber
scalars. Convenience initializers exist to infer shape or data type.
From single scalars:
init(_:)
,init(_:dataType:)
,init(float:)
,init(int:)
, etc.: Create 0-dimensional tensors (scalars).
Objective-C:
#import <ExecuTorch/ExecuTorch.h>
// Create from copying bytes.
float data[] = {1.0f, 2.0f, 3.0f, 4.0f};
NSArray<NSNumber *> *shape = @[@2, @2];
ExecuTorchTensor *tensorFromBytes = [[ExecuTorchTensor alloc] initWithBytes:data
shape:shape
dataType:ExecuTorchDataTypeFloat];
// Create from scalars.
NSArray<NSNumber *> *scalars = @[@(1), @(2), @(3)];
ExecuTorchTensor *tensorFromScalars = [[ExecuTorchTensor alloc] initWithScalars:scalars
dataType:ExecuTorchDataTypeInt];
// Create a float scalar tensor.
ExecuTorchTensor *scalarTensor = [[ExecuTorchTensor alloc] initWithFloat:3.14f];
Swift:
import ExecuTorch
// Create from existing buffer without copying.
var mutableData: [Float] = [1.0, 2.0, 3.0, 4.0]
let tensorNoCopy = mutableData.withUnsafeMutableBytes { bufferPointer in
Tensor(
bytesNoCopy: bufferPointer.baseAddress!,
shape: [2, 2],
dataType: .float
)
}
// Create from Data (no copy).
let data = Data(bytes: mutableData, count: mutableData.count * MemoryLayout<Float>.size)
let tensorFromData = Tensor(data: data, shape: [2, 2], dataType: .float)
// Create from scalars (infers float type).
let tensorFromScalars = Tensor([1.0, 2.0, 3.0, 4.0], shape: [4])
// Create an Int scalar tensor.
let scalarTensor = Tensor(42) // Infers Int as .long data type (64-bit integer)
Use bytes(_:)
for immutable access and mutableBytes(_:)
for mutable access to the tensor's underlying data buffer.
Objective-C:
[tensor bytesWithHandler:^(const void *pointer, NSInteger count, ExecuTorchDataType dataType) {
if (dataType == ExecuTorchDataTypeFloat) {
const float *floatPtr = (const float *)pointer;
NSLog(@"First float element: %f", floatPtr[0]);
}
}];
[tensor mutableBytesWithHandler:^(void *pointer, NSInteger count, ExecuTorchDataType dataType) {
if (dataType == ExecuTorchDataTypeFloat) {
float *floatPtr = (float *)pointer;
floatPtr[0] = 100.0f; // Modify the original mutableData buffer.
}
}];
Swift:
tensor.bytes { pointer, count, dataType in
if dataType == .float {
let buffer = UnsafeBufferPointer(start: pointer.assumingMemoryBound(to: Float.self), count: count)
print("First float element: \(buffer.first ?? 0.0)")
}
}
tensor.mutableBytes { pointer, count, dataType in
if dataType == .float {
let buffer = UnsafeMutableBufferPointer(start: pointer.assumingMemoryBound(to: Float.self), count: count)
buffer[1] = 200.0 // Modify the original mutableData buffer.
}
}
Tensors can be resized if their underlying memory allocation allows it (typically requires ShapeDynamism other than Static or sufficient capacity).
Objective-C:
NSError *error;
BOOL success = [tensor resizeToShape:@[@4, @1] error:&error];
if (success) {
NSLog(@"Resized shape: %@", tensor.shape);
} else {
NSLog(@"Resize failed: %@", error);
}
Swift:
do {
try tensor.resize(to: [4, 1])
print("Resized shape: \(tensor.shape)")
} catch {
print("Resize failed: \(error)")
}
The Value
class (exposed as ExecuTorchValue
in Objective-C) is a dynamic container that can hold different types of data, primarily used for model inputs and outputs. ExecuTorch methods accept and return arrays of Value
objects.
tag
: Indicates the type of data held (e.g.,.tensor
,.integer
,.string
,.boolean
).isTensor
,isInteger
,isString
, etc.: Boolean checks for the type.tensor
,integer
,string
,boolean
,double
: Accessors for the underlying data (returnnil
or a default value if the tag doesn't match).
Create Value objects directly from the data they should hold.
Objective-C:
#import <ExecuTorch/ExecuTorch.h>
ExecuTorchTensor *tensor = [[ExecuTorchTensor alloc] initWithFloat:1.0f];
ExecuTorchValue *tensorValue = [[ExecuTorchValue alloc] valueWithTensor:tensor];
ExecuTorchValue *intValue = [[ExecuTorchValue alloc] valueWithInteger:100];
ExecuTorchValue *stringValue = [[ExecuTorchValue alloc] valueWithString:@"hello"];
ExecuTorchValue *boolValue = [[ExecuTorchValue alloc] valueWithBoolean:YES];
ExecuTorchValue *doubleValue = [[ExecuTorchValue alloc] valueWithDouble:3.14];
Swift:
import ExecuTorch
let tensor = Tensor(2.0)
let tensorValue = Value(tensor)
let intValue = Value(200)
let stringValue = Value("world")
let boolValue = Value(false)
let doubleValue = Value(2.718)
The Module
class (exposed as ExecuTorchModule
in Objective-C) represents a loaded ExecuTorch model (.pte
file). It provides methods to load the model program and execute its internal methods (like forward
).
Create a Module
instance by providing the file path to the .pte
model. Initialization itself is lightweight and doesn't load the program data immediately.
Objective-C:
#import <ExecuTorch/ExecuTorch.h>
NSString *modelPath = [[NSBundle mainBundle] pathForResource:@"model" ofType:@"pte"];
ExecuTorchModule *module = [[ExecuTorchModule alloc] initWithFilePath:modelPath];
// Optional: specify load mode, e.g., memory mapping.
// ExecuTorchModule *moduleMmap = [[ExecuTorchModule alloc] initWithFilePath:modelPath
// loadMode:ExecuTorchModuleLoadModeMmap];
Swift:
import ExecuTorch
let modelPath = Bundle.main.path(forResource: "model", ofType: "pte")
let module = Module(filePath: modelPath!)
// Optional: specify load mode, e.g., memory mapping.
// let moduleMmap = Module(filePath: modelPath, loadMode: .mmap)
Model loading is deferred until explicitly requested or needed for execution. While execution calls can trigger loading automatically, it's often more efficient to load methods explicitly beforehand.
load()
: Loads the basic program structure. Minimal verification is used by default.load(_:)
: Loads the program structure and prepares a specific method (e.g., "forward") for execution. This performs necessary setup like backend delegation and is recommended if you know which method you'll run.isLoaded()
/isLoaded(_:)
: Check loading status.
Objective-C:
NSError *error;
// Loads program and prepares 'forward' for execution.
BOOL success = [module loadMethod:@"forward" error:&error];
if (success) {
NSLog(@"Forward method loaded: %d", [module isMethodLoaded:@"forward"]);
} else {
NSLog(@"Failed to load method: %@", error);
}
Swift:
do {
// Loads program and prepares 'forward' for execution.
try module.load("forward")
print("Forward method loaded: \(module.isLoaded("forward"))")
} catch {
print("Failed to load method: \(error)")
}
The Module
class offers flexible ways to execute methods within the loaded program.
- Named Execution: You can execute any available method by name using
execute(methodName:inputs:)
. - Forward Shortcut: For the common case of running the primary inference method, use the
forward(inputs:)
shortcut, which is equivalent to calling execute with the method name "forward". - Input Flexibility: Inputs can be provided in several ways:
- As an array of
Value
objects. This is the most general form. - As an array of
Tensor
objects. This is a convenience where tensors are automatically wrapped intoValue
objects. - As a single
Value
orTensor
object if the method expects only one input. - With no inputs if the method takes none.
- As an array of
Outputs are always returned as an array of Value
.
Objective-C:
ExecuTorchTensor *inputTensor1 = [[ExecuTorchTensor alloc] initWithScalars:@[@1.0f, @2.0f]];
ExecuTorchTensor *inputTensor2 = [[ExecuTorchTensor alloc] initWithScalars:@[@3.0f, @4.0f]];
ExecuTorchTensor *singleInputTensor = [[ExecuTorchTensor alloc] initWithFloat:5.0f];
NSError *error;
// Execute "forward" using the shortcut with an array of Tensors.
NSArray<ExecuTorchValue *> *outputs1 = [module forwardWithTensors:@[inputTensor1, inputTensor2] error:&error];
if (outputs1) {
NSLog(@"Forward output count: %lu", (unsigned long)outputs1.count);
} else {
NSLog(@"Execution failed: %@", error);
}
// Execute "forward" with a single Tensor input.
NSArray<ExecuTorchValue *> *outputs2 = [module forwardWithTensor:singleInputTensor error:&error];
if (outputs2) {
NSLog(@"Forward single input output count: %lu", (unsigned long)outputs2.count);
} else {
NSLog(@"Execution failed: %@", error);
}
// Execute a potentially different method by name.
NSArray<ExecuTorchValue *> *outputs3 = [module executeMethod:@"another_method"
withInput:[[ExecuTorchValue alloc] valueWithTensor:inputTensor1]
error:&error];
// Process outputs (assuming first output is a tensor).
if (outputs1) {
ExecuTorchValue *firstOutput = outputs1.firstObject;
if (firstOutput.isTensor) {
ExecuTorchTensor *resultTensor = firstOutput.tensorValue;
// Process resultTensor.
}
}
Swift:
let inputTensor1 = Tensor([1.0, 2.0], dataType: .float)
let inputTensor2 = Tensor([3.0, 4.0], dataType: .float)
let singleInputTensor = Tensor([5.0], dataType: .float)
do {
// Execute "forward" using the shortcut with an array of Tensors.
let outputs1 = try module.forward([inputTensor1, inputTensor2])
print("Forward output count: \(outputs1.count)")
// Execute "forward" with a single Tensor input.
let outputs2 = try module.forward(singleInputTensor)
print("Forward single input output count: \(outputs2.count)")
// Execute a potentially different method by name.
let outputs3 = try module.execute("another_method", inputs: [Value(inputTensor1)])
// Process outputs (assuming first output is a tensor).
if let resultTensor = outputs1.first?.tensor {
resultTensor.bytes { ptr, count, dtype in
// Access result data.
}
}
} catch {
print("Execution failed: \(error)")
}
You can query the available method names in the model after the program is loaded.
Objective-C:
NSError *error;
// Note: methodNames: will load the program if not already loaded.
NSSet<NSString *> *names = [module methodNames:&error];
if (names) {
NSLog(@"Available methods: %@", names);
} else {
NSLog(@"Could not get method names: %@", error);
}
Swift:
do {
// Note: methodNames() will load the program if not already loaded.
let names = try module.methodNames()
print("Available methods: \(names)") // Output: e.g., {"forward"}
} catch {
print("Could not get method names: \(error)")
}
ExecuTorch provides APIs for logging in Objective-C and Swift via the ExecuTorchLog
(Log
in Swift) singleton. You can subscribe custom log sinks conforming to the ExecuTorchLogSink
(LogSink
in Swift) protocol to receive internal ExecuTorch log messages.
Note: Logs are stripped in the Release builds of ExecuTorch frameworks. To capture logs, link against the Debug builds (e.g., executorch_debug
) during development.
Objective-C:
#import <ExecuTorch/ExecuTorch.h>
#import <os/log.h>
@interface MyClass : NSObject<ExecuTorchLogSink>
@end
@implementation MyClass
- (instancetype)init {
self = [super init];
if (self) {
#if DEBUG
[ExecuTorchLog.sharedLog addSink:self];
#endif
}
return self;
}
- (void)dealloc {
#if DEBUG
[ExecuTorchLog.sharedLog removeSink:self];
#endif
}
#if DEBUG
- (void)logWithLevel:(ExecuTorchLogLevel)level
timestamp:(NSTimeInterval)timestamp
filename:(NSString *)filename
line:(NSUInteger)line
message:(NSString *)message {
NSString *logMessage = [NSString stringWithFormat:@"%@:%lu %@", filename, (unsigned long)line, message];
switch (level) {
case ExecuTorchLogLevelDebug:
os_log_with_type(OS_LOG_DEFAULT, OS_LOG_TYPE_DEBUG, "%{public}@", logMessage);
break;
case ExecuTorchLogLevelInfo:
os_log_with_type(OS_LOG_DEFAULT, OS_LOG_TYPE_INFO, "%{public}@", logMessage);
break;
case ExecuTorchLogLevelError:
os_log_with_type(OS_LOG_DEFAULT, OS_LOG_TYPE_ERROR, "%{public}@", logMessage);
break;
case ExecuTorchLogLevelFatal:
os_log_with_type(OS_LOG_DEFAULT, OS_LOG_TYPE_FAULT, "%{public}@", logMessage);
break;
default:
os_log(OS_LOG_DEFAULT, "%{public}@", logMessage);
break;
}
}
#endif
@end
Swift:
import ExecuTorch
import os.log
public class MyClass {
public init() {
#if DEBUG
Log.shared.add(sink: self)
#endif
}
deinit {
#if DEBUG
Log.shared.remove(sink: self)
#endif
}
}
#if DEBUG
extension MyClass: LogSink {
public func log(level: LogLevel, timestamp: TimeInterval, filename: String, line: UInt, message: String) {
let logMessage = "\(filename):\(line) \(message)"
switch level {
case .debug:
os_log(.debug, "%{public}@", logMessage)
case .info:
os_log(.info, "%{public}@", logMessage)
case .error:
os_log(.error, "%{public}@", logMessage)
case .fatal:
os_log(.fault, "%{public}@", logMessage)
default:
os_log("%{public}@", logMessage)
}
}
}
#endif
Note: In the example, the logs are intentionally stripped out when the code is not built for Debug mode, i.e., the DEBUG
macro is not defined or equals zero.
If you are linking against a Debug build of the ExecuTorch frameworks, configure your debugger to map the source code correctly by using the following LLDB command in the debug session:
settings append target.source-map /executorch <path_to_executorch_source_code>
Ensure the exported model is using an appropriate backend, such as XNNPACK, Core ML, or MPS. If the correct backend is invoked but performance issues persist, confirm that you are linking against the Release build of the backend runtime.
For optimal performance, link the ExecuTorch runtime in Release mode too. If debugging is needed, you can keep the ExecuTorch runtime in Debug mode with minimal impact on performance, but preserve logging and debug symbols.
If you encounter a checksum mismatch error with Swift PM, clear the package cache using the Xcode menu (File > Packages > Reset Package Caches
) or the following command:
rm -rf <YouProjectName>.xcodeproj/project.xcworkspace/xcshareddata/swiftpm \
~/Library/org.swift.swiftpm \
~/Library/Caches/org.swift.swiftpm \
~/Library/Caches/com.apple.dt.Xcode \
~/Library/Developer/Xcode/DerivedData
Note: Ensure Xcode is fully quit before running the terminal command to avoid conflicts with active processes.