-
Notifications
You must be signed in to change notification settings - Fork 527
/
Copy pathop_mm.cpp
149 lines (119 loc) · 3.74 KB
/
op_mm.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <executorch/backends/cadence/hifi/kernels/kernels.h>
#include <executorch/kernels/portable/cpu/util/matmul_ops_util.h>
#include <executorch/kernels/portable/cpu/vec_ops.h>
#include <executorch/runtime/kernel/kernel_includes.h>
using exec_aten::ScalarType;
using exec_aten::Tensor;
using executorch::runtime::KernelRuntimeContext;
using executorch::runtime::kTensorDimensionLimit;
using executorch::runtime::resize_tensor;
using executorch::runtime::tensor_is_default_dim_order;
using executorch::runtime::tensors_have_same_dim_order;
using torch::executor::check_mm_args;
using torch::executor::Error;
using torch::executor::get_mm_out_target_size;
namespace cadence {
namespace impl {
namespace HiFi {
namespace native {
Tensor& mm_out(
KernelRuntimeContext& ctx,
const Tensor& in,
const Tensor& mat2,
Tensor& out) {
ET_KERNEL_CHECK(ctx, check_mm_args(in, mat2, out), InvalidArgument, out);
size_t output_ndim = 0;
exec_aten::SizesType output_sizes[kTensorDimensionLimit];
get_mm_out_target_size(in, mat2, output_sizes, &output_ndim);
ET_KERNEL_CHECK(
ctx,
resize_tensor(out, {output_sizes, output_ndim}) == Error::Ok,
InvalidArgument,
out);
ET_KERNEL_CHECK(
ctx, tensors_have_same_dim_order(in, mat2, out), InvalidArgument, out);
ET_KERNEL_CHECK(ctx, tensor_is_default_dim_order(in), InvalidArgument, out);
ScalarType out_type = out.scalar_type();
constexpr auto name = "mm.out";
bool optimized = true;
if (out_type != ScalarType::Float)
optimized = false;
if (optimized) {
const float* in_data = in.const_data_ptr<float>();
const float* mat2_data = mat2.const_data_ptr<float>();
float* out_data = out.mutable_data_ptr<float>();
int64_t m = in.size(0);
int64_t n = in.size(1);
int64_t p = mat2.size(1);
WORD32 rows = m;
WORD32 cols1 = n;
WORD32 row_stride1 = n;
WORD32 vec_count = p;
WORD32 vec_offset = n;
WORD32 out_offset = 1;
WORD32 out_stride = p;
WORD32* __restrict__ p_o =
(WORD32* __restrict__)kernels::allocate_temp_memory(
ctx, (n * p) * sizeof(WORD32));
WORD32 p_inp_shape[2];
p_inp_shape[0] = n;
p_inp_shape[1] = p;
WORD32 p_out_shape[2];
p_out_shape[0] = p;
p_out_shape[1] = n;
WORD32 p_permute_vec[2] = {1, 0};
WORD32 num_out_dims = 2;
WORD32 num_inp_dims = 2;
const FLOAT32* __restrict__ p_mat1 = in_data;
const FLOAT32* __restrict__ p_vec1 = mat2_data;
FLOAT32* __restrict__ p_out = out_data;
WORD32* p_inp = (WORD32*)p_vec1;
WORD32 t = xa_nn_transpose_32_32(
p_o,
p_out_shape,
p_inp,
p_inp_shape,
p_permute_vec,
num_out_dims,
num_inp_dims);
const FLOAT32* __restrict__ p_vec = (const FLOAT32* __restrict__)p_o;
WORD32 val = xa_nn_matmul_f32xf32_f32(
p_out,
p_mat1,
p_vec,
NULL,
rows,
cols1,
row_stride1,
vec_count,
vec_offset,
out_offset,
out_stride);
return out;
}
ET_SWITCH_REAL_TYPES_AND2(
Half, BFloat16, in.scalar_type(), ctx, name, CTYPE, [&]() {
size_t m = in.size(0);
size_t n = in.size(1);
size_t p = mat2.size(1);
torch::executor::vec_matmul<CTYPE>(
out.mutable_data_ptr<CTYPE>(),
in.const_data_ptr<CTYPE>(),
mat2.const_data_ptr<CTYPE>(),
m,
n,
p);
});
return out;
}
} // namespace native
} // namespace HiFi
} // namespace impl
} // namespace cadence