@@ -1583,7 +1583,7 @@ def ref_rand(mu, rowcov, colcov):
1583
1583
rowcov = np .eye (3 ),
1584
1584
colcov = np .eye (3 ),
1585
1585
)
1586
- check = pm .sample_prior_predictive (n_fails )
1586
+ check = pm .sample_prior_predictive (n_fails , return_inferencedata = False )
1587
1587
1588
1588
ref_smp = ref_rand (mu = np .random .random ((3 , 3 )), rowcov = np .eye (3 ), colcov = np .eye (3 ))
1589
1589
@@ -1921,7 +1921,7 @@ def sample_prior(self, distribution, shape, nested_rvs_info, prior_samples):
1921
1921
nested_rvs_info ,
1922
1922
)
1923
1923
with model :
1924
- return pm .sample_prior_predictive (prior_samples )
1924
+ return pm .sample_prior_predictive (prior_samples , return_inferencedata = False )
1925
1925
1926
1926
@pytest .mark .parametrize (
1927
1927
["prior_samples" , "shape" , "mu" , "alpha" ],
@@ -2379,7 +2379,7 @@ def test_car_rng_fn(sparse):
2379
2379
with pm .Model (rng_seeder = 1 ):
2380
2380
car = pm .CAR ("car" , mu , W , alpha , tau , size = size )
2381
2381
mn = pm .MvNormal ("mn" , mu , cov , size = size )
2382
- check = pm .sample_prior_predictive (n_fails )
2382
+ check = pm .sample_prior_predictive (n_fails , return_inferencedata = False )
2383
2383
2384
2384
p , f = delta , n_fails
2385
2385
while p <= delta and f > 0 :
0 commit comments