-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
Copy pathmetapath2vec.py
77 lines (58 loc) · 2.19 KB
/
metapath2vec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# Reaches around 91.8% Micro-F1 after 5 epochs.
import os.path as osp
import torch
import torch_geometric
from torch_geometric.datasets import AMiner
from torch_geometric.nn import MetaPath2Vec
path = osp.join(osp.dirname(osp.realpath(__file__)), '../../data/AMiner')
dataset = AMiner(path)
data = dataset[0]
metapath = [
('author', 'writes', 'paper'),
('paper', 'published_in', 'venue'),
('venue', 'publishes', 'paper'),
('paper', 'written_by', 'author'),
]
if torch.cuda.is_available():
device = torch.device('cuda')
elif torch_geometric.is_xpu_available():
device = torch.device('xpu')
else:
device = torch.device('cpu')
model = MetaPath2Vec(data.edge_index_dict, embedding_dim=128,
metapath=metapath, walk_length=50, context_size=7,
walks_per_node=5, num_negative_samples=5,
sparse=True).to(device)
loader = model.loader(batch_size=128, shuffle=True, num_workers=6)
optimizer = torch.optim.SparseAdam(list(model.parameters()), lr=0.01)
def train(epoch, log_steps=100, eval_steps=2000):
model.train()
total_loss = 0
for i, (pos_rw, neg_rw) in enumerate(loader):
optimizer.zero_grad()
loss = model.loss(pos_rw.to(device), neg_rw.to(device))
loss.backward()
optimizer.step()
total_loss += loss.item()
if (i + 1) % log_steps == 0:
print(f'Epoch: {epoch}, Step: {i + 1:05d}/{len(loader)}, '
f'Loss: {total_loss / log_steps:.4f}')
total_loss = 0
if (i + 1) % eval_steps == 0:
acc = test()
print(f'Epoch: {epoch}, Step: {i + 1:05d}/{len(loader)}, '
f'Acc: {acc:.4f}')
@torch.no_grad()
def test(train_ratio=0.1):
model.eval()
z = model('author', batch=data['author'].y_index.to(device))
y = data['author'].y
perm = torch.randperm(z.size(0))
train_perm = perm[:int(z.size(0) * train_ratio)]
test_perm = perm[int(z.size(0) * train_ratio):]
return model.test(z[train_perm], y[train_perm], z[test_perm], y[test_perm],
max_iter=150)
for epoch in range(1, 6):
train(epoch)
acc = test()
print(f'Epoch: {epoch}, Accuracy: {acc:.4f}')