@@ -74,47 +74,47 @@ impl Node {
74
74
75
75
Negation ( box a) => {
76
76
let sa = a. emitter_simplify ( const_provider, pc) ;
77
- ( Negation ( box sa. 0 ) . simplify ( ) , sa. 1 )
77
+ ( Negation ( Box :: new ( sa. 0 ) ) . simplify ( ) , sa. 1 )
78
78
}
79
79
Plus ( box a, box b) => {
80
80
let sa = a. emitter_simplify ( const_provider, pc) ;
81
81
let sb = b. emitter_simplify ( const_provider, pc) ;
82
- ( Plus ( box sa. 0 , box sb. 0 ) . simplify ( ) , sa. 1 && sb. 1 )
82
+ ( Plus ( Box :: new ( sa. 0 ) , Box :: new ( sb. 0 ) ) . simplify ( ) , sa. 1 && sb. 1 )
83
83
}
84
84
Minus ( box a, box b) => {
85
85
let sa = a. emitter_simplify ( const_provider, pc) ;
86
86
let sb = b. emitter_simplify ( const_provider, pc) ;
87
- ( Minus ( box sa. 0 , box sb. 0 ) . simplify ( ) , sa. 1 && sb. 1 )
87
+ ( Minus ( Box :: new ( sa. 0 ) , Box :: new ( sb. 0 ) ) . simplify ( ) , sa. 1 && sb. 1 )
88
88
}
89
89
Times ( box a, box b) => {
90
90
let sa = a. emitter_simplify ( const_provider, pc) ;
91
91
let sb = b. emitter_simplify ( const_provider, pc) ;
92
- ( Times ( box sa. 0 , box sb. 0 ) . simplify ( ) , sa. 1 && sb. 1 )
92
+ ( Times ( Box :: new ( sa. 0 ) , Box :: new ( sb. 0 ) ) . simplify ( ) , sa. 1 && sb. 1 )
93
93
}
94
94
Divide ( box a, box b) => {
95
95
let sa = a. emitter_simplify ( const_provider, pc) ;
96
96
let sb = b. emitter_simplify ( const_provider, pc) ;
97
- ( Divide ( box sa. 0 , box sb. 0 ) . simplify ( ) , sa. 1 && sb. 1 )
97
+ ( Divide ( Box :: new ( sa. 0 ) , Box :: new ( sb. 0 ) ) . simplify ( ) , sa. 1 && sb. 1 )
98
98
}
99
99
Shl ( box a, box b) => {
100
100
let sa = a. emitter_simplify ( const_provider, pc) ;
101
101
let sb = b. emitter_simplify ( const_provider, pc) ;
102
- ( Shl ( box sa. 0 , box sb. 0 ) . simplify ( ) , sa. 1 && sb. 1 )
102
+ ( Shl ( Box :: new ( sa. 0 ) , Box :: new ( sb. 0 ) ) . simplify ( ) , sa. 1 && sb. 1 )
103
103
}
104
104
Shr ( box a, box b) => {
105
105
let sa = a. emitter_simplify ( const_provider, pc) ;
106
106
let sb = b. emitter_simplify ( const_provider, pc) ;
107
- ( Shr ( box sa. 0 , box sb. 0 ) . simplify ( ) , sa. 1 && sb. 1 )
107
+ ( Shr ( Box :: new ( sa. 0 ) , Box :: new ( sb. 0 ) ) . simplify ( ) , sa. 1 && sb. 1 )
108
108
}
109
109
Ashr ( box a, box b) => {
110
110
let sa = a. emitter_simplify ( const_provider, pc) ;
111
111
let sb = b. emitter_simplify ( const_provider, pc) ;
112
- ( Ashr ( box sa. 0 , box sb. 0 ) . simplify ( ) , sa. 1 && sb. 1 )
112
+ ( Ashr ( Box :: new ( sa. 0 ) , Box :: new ( sb. 0 ) ) . simplify ( ) , sa. 1 && sb. 1 )
113
113
}
114
114
115
115
Argument ( box node) => {
116
116
let s = node. emitter_simplify ( const_provider, pc) ;
117
- ( Argument ( box s. 0 ) , s. 1 )
117
+ ( Argument ( Box :: new ( s. 0 ) ) , s. 1 )
118
118
}
119
119
Instruction ( iname, args) => {
120
120
let mut succ = true ;
0 commit comments