Skip to content

BUG: the behavior of "date_range" function with "periods & inclusive" arguments #46331

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
3 tasks done
idanhazan opened this issue Mar 11, 2022 · 1 comment
Open
3 tasks done
Labels
Bug Datetime Datetime data dtype

Comments

@idanhazan
Copy link

idanhazan commented Mar 11, 2022

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import pandas as pd

pd.date_range(start='2020-06-01', periods=4, inclusive='both')
# DatetimeIndex(['2020-06-01', '2020-06-02', '2020-06-03', '2020-06-04'], dtype='datetime64[ns]', freq='D')

pd.date_range(start='2020-06-01', periods=4, inclusive='neither')
# Output:
# DatetimeIndex(['2020-06-02', '2020-06-03', '2020-06-04'], dtype='datetime64[ns]', freq='D')
# Expected:
# DatetimeIndex(['2020-06-02', '2020-06-03'], dtype='datetime64[ns]', freq='D')

pd.date_range(start='2020-06-01', periods=4, inclusive='left')
# Output:
# DatetimeIndex(['2020-06-01', '2020-06-02', '2020-06-03', '2020-06-04'], dtype='datetime64[ns]', freq='D')
# Expected:
# DatetimeIndex(['2020-06-01', '2020-06-02', '2020-06-03'], dtype='datetime64[ns]', freq='D')

pd.date_range(start='2020-06-01', periods=4, inclusive='right')
# DatetimeIndex(['2020-06-02', '2020-06-03', '2020-06-04'], dtype='datetime64[ns]', freq='D')

Issue Description

First of all, I have no idea if it actually a bug, maybe it not understood for me.

How do I think the function should bring the output:

Calculate with inclusive=True and then filter out left/right/both at the edges.

Expected Behavior

pd.date_range(start='2020-06-01', periods=4, inclusive='neither')

# Output:
DatetimeIndex(['2020-06-02', '2020-06-03', '2020-06-04'], dtype='datetime64[ns]', freq='D')

# Expected:
DatetimeIndex(['2020-06-02', '2020-06-03'], dtype='datetime64[ns]', freq='D')
pd.date_range(start='2020-06-01', periods=4, inclusive='left')

# Output:
DatetimeIndex(['2020-06-01', '2020-06-02', '2020-06-03', '2020-06-04'], dtype='datetime64[ns]', freq='D')

# Expected:
DatetimeIndex(['2020-06-01', '2020-06-02', '2020-06-03'], dtype='datetime64[ns]', freq='D')

Installed Versions

INSTALLED VERSIONS

commit : 06d2301
python : 3.9.10.final.0
python-bits : 64
OS : Linux
OS-release : 5.13.0-30-generic
Version : #33-Ubuntu SMP Fri Feb 4 17:03:31 UTC 2022
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_IL
LOCALE : en_IL.UTF-8

pandas : 1.4.1
numpy : 1.22.2
pytz : 2021.3
dateutil : 2.8.2
pip : 22.0.3
setuptools : 59.8.0
Cython : None
pytest : None
hypothesis : None
sphinx : 4.4.0
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.8.0
html5lib : None
pymysql : None
psycopg2 : 2.9.3
jinja2 : 3.0.3
IPython : 7.32.0
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : None
fsspec : 2022.02.0
gcsfs : None
matplotlib : 3.5.1
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyreadstat : None
pyxlsb : None
s3fs : 2022.02.0
scipy : 1.8.0
sqlalchemy : 1.4.31
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
zstandard : None

@idanhazan idanhazan added Bug Needs Triage Issue that has not been reviewed by a pandas team member labels Mar 11, 2022
@idanhazan idanhazan changed the title BUG: the behaviour of "date_range" function with "periods & inclusive" arguments BUG: the behavior of "date_range" function with "periods & inclusive" arguments Mar 12, 2022
@attack68
Copy link
Contributor

I agree with you that this does not appear consistent, even with my comment below.

Interestingly, it rather throws up an odd nomenclature item. Is a period defined as that between two timepoints or as a single time point, i.e. is [time1, time2, time3] two periods or three? It seems that pandas has adopted the three periods definition and as such that probably wont be changed but the inclusive arg should work properly I think. This might break a lot of tests though.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Bug Datetime Datetime data dtype
Projects
None yet
2 participants