-
Notifications
You must be signed in to change notification settings - Fork 397
/
Copy pathmbpo.py
276 lines (247 loc) · 11.2 KB
/
mbpo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import itertools
import numpy as np
import copy
import torch
from torch import nn
from ding.utils import WORLD_MODEL_REGISTRY
from ding.utils.data import default_collate
from ding.world_model.base_world_model import HybridWorldModel
from ding.world_model.model.ensemble import EnsembleModel, StandardScaler
from ding.torch_utils import fold_batch, unfold_batch, unsqueeze_repeat
@WORLD_MODEL_REGISTRY.register('mbpo')
class MBPOWorldModel(HybridWorldModel, nn.Module):
config = dict(
model=dict(
ensemble_size=7,
elite_size=5,
state_size=None,
action_size=None,
reward_size=1,
hidden_size=200,
use_decay=False,
batch_size=256,
holdout_ratio=0.2,
max_epochs_since_update=5,
deterministic_rollout=True,
),
)
def __init__(self, cfg, env, tb_logger):
HybridWorldModel.__init__(self, cfg, env, tb_logger)
nn.Module.__init__(self)
cfg = cfg.model
self.ensemble_size = cfg.ensemble_size
self.elite_size = cfg.elite_size
self.state_size = cfg.state_size
self.action_size = cfg.action_size
self.reward_size = cfg.reward_size
self.hidden_size = cfg.hidden_size
self.use_decay = cfg.use_decay
self.batch_size = cfg.batch_size
self.holdout_ratio = cfg.holdout_ratio
self.max_epochs_since_update = cfg.max_epochs_since_update
self.deterministic_rollout = cfg.deterministic_rollout
self.ensemble_model = EnsembleModel(
self.state_size,
self.action_size,
self.reward_size,
self.ensemble_size,
self.hidden_size,
use_decay=self.use_decay
)
self.scaler = StandardScaler(self.state_size + self.action_size)
if self._cuda:
self.cuda()
self.ensemble_mse_losses = []
self.model_variances = []
self.elite_model_idxes = []
def step(self, obs, act, batch_size=8192, keep_ensemble=False):
if len(act.shape) == 1:
act = act.unsqueeze(1)
if self._cuda:
obs = obs.cuda()
act = act.cuda()
inputs = torch.cat([obs, act], dim=-1)
if keep_ensemble:
inputs, dim = fold_batch(inputs, 1)
inputs = self.scaler.transform(inputs)
inputs = unfold_batch(inputs, dim)
else:
inputs = self.scaler.transform(inputs)
# predict
ensemble_mean, ensemble_var = [], []
batch_dim = 0 if len(inputs.shape) == 2 else 1
for i in range(0, inputs.shape[batch_dim], batch_size):
if keep_ensemble:
# inputs: [E, B, D]
input = inputs[:, i:i + batch_size]
else:
# input: [B, D]
input = unsqueeze_repeat(inputs[i:i + batch_size], self.ensemble_size)
b_mean, b_var = self.ensemble_model(input, ret_log_var=False)
ensemble_mean.append(b_mean)
ensemble_var.append(b_var)
ensemble_mean = torch.cat(ensemble_mean, 1)
ensemble_var = torch.cat(ensemble_var, 1)
if keep_ensemble:
ensemble_mean[:, :, 1:] += obs
else:
ensemble_mean[:, :, 1:] += obs.unsqueeze(0)
ensemble_std = ensemble_var.sqrt()
# sample from the predicted distribution
if self.deterministic_rollout:
ensemble_sample = ensemble_mean
else:
ensemble_sample = ensemble_mean + torch.randn_like(ensemble_mean).to(ensemble_mean) * ensemble_std
if keep_ensemble:
# [E, B, D]
rewards, next_obs = ensemble_sample[:, :, 0], ensemble_sample[:, :, 1:]
next_obs_flatten, dim = fold_batch(next_obs)
done = unfold_batch(self.env.termination_fn(next_obs_flatten), dim)
return rewards, next_obs, done
# sample from ensemble
model_idxes = torch.from_numpy(np.random.choice(self.elite_model_idxes, size=len(obs))).to(inputs.device)
batch_idxes = torch.arange(len(obs)).to(inputs.device)
sample = ensemble_sample[model_idxes, batch_idxes]
rewards, next_obs = sample[:, 0], sample[:, 1:]
return rewards, next_obs, self.env.termination_fn(next_obs)
def eval(self, env_buffer, envstep, train_iter):
data = env_buffer.sample(self.eval_freq, train_iter)
data = default_collate(data)
data['done'] = data['done'].float()
data['weight'] = data.get('weight', None)
obs = data['obs']
action = data['action']
reward = data['reward']
next_obs = data['next_obs']
if len(reward.shape) == 1:
reward = reward.unsqueeze(1)
if len(action.shape) == 1:
action = action.unsqueeze(1)
# build eval samples
inputs = torch.cat([obs, action], dim=1)
labels = torch.cat([reward, next_obs - obs], dim=1)
if self._cuda:
inputs = inputs.cuda()
labels = labels.cuda()
# normalize
inputs = self.scaler.transform(inputs)
# repeat for ensemble
inputs = unsqueeze_repeat(inputs, self.ensemble_size)
labels = unsqueeze_repeat(labels, self.ensemble_size)
# eval
with torch.no_grad():
mean, logvar = self.ensemble_model(inputs, ret_log_var=True)
loss, mse_loss = self.ensemble_model.loss(mean, logvar, labels)
ensemble_mse_loss = torch.pow(mean.mean(0) - labels[0], 2)
model_variance = mean.var(0)
self.tb_logger.add_scalar('env_model_step/eval_mse_loss', mse_loss.mean().item(), envstep)
self.tb_logger.add_scalar('env_model_step/eval_ensemble_mse_loss', ensemble_mse_loss.mean().item(), envstep)
self.tb_logger.add_scalar('env_model_step/eval_model_variances', model_variance.mean().item(), envstep)
self.last_eval_step = envstep
def train(self, env_buffer, envstep, train_iter):
data = env_buffer.sample(env_buffer.count(), train_iter)
data = default_collate(data)
data['done'] = data['done'].float()
data['weight'] = data.get('weight', None)
obs = data['obs']
action = data['action']
reward = data['reward']
next_obs = data['next_obs']
if len(reward.shape) == 1:
reward = reward.unsqueeze(1)
if len(action.shape) == 1:
action = action.unsqueeze(1)
# build train samples
inputs = torch.cat([obs, action], dim=1)
labels = torch.cat([reward, next_obs - obs], dim=1)
if self._cuda:
inputs = inputs.cuda()
labels = labels.cuda()
# train
logvar = self._train(inputs, labels)
self.last_train_step = envstep
# log
if self.tb_logger is not None:
for k, v in logvar.items():
self.tb_logger.add_scalar('env_model_step/' + k, v, envstep)
def _train(self, inputs, labels):
#split
num_holdout = int(inputs.shape[0] * self.holdout_ratio)
train_inputs, train_labels = inputs[num_holdout:], labels[num_holdout:]
holdout_inputs, holdout_labels = inputs[:num_holdout], labels[:num_holdout]
#normalize
self.scaler.fit(train_inputs)
train_inputs = self.scaler.transform(train_inputs)
holdout_inputs = self.scaler.transform(holdout_inputs)
#repeat for ensemble
holdout_inputs = unsqueeze_repeat(holdout_inputs, self.ensemble_size)
holdout_labels = unsqueeze_repeat(holdout_labels, self.ensemble_size)
self._epochs_since_update = 0
self._snapshots = {i: (-1, 1e10) for i in range(self.ensemble_size)}
self._save_states()
for epoch in itertools.count():
train_idx = torch.stack([torch.randperm(train_inputs.shape[0])
for _ in range(self.ensemble_size)]).to(train_inputs.device)
self.mse_loss = []
for start_pos in range(0, train_inputs.shape[0], self.batch_size):
idx = train_idx[:, start_pos:start_pos + self.batch_size]
train_input = train_inputs[idx]
train_label = train_labels[idx]
mean, logvar = self.ensemble_model(train_input, ret_log_var=True)
loss, mse_loss = self.ensemble_model.loss(mean, logvar, train_label)
self.ensemble_model.train(loss)
self.mse_loss.append(mse_loss.mean().item())
self.mse_loss = sum(self.mse_loss) / len(self.mse_loss)
with torch.no_grad():
holdout_mean, holdout_logvar = self.ensemble_model(holdout_inputs, ret_log_var=True)
_, holdout_mse_loss = self.ensemble_model.loss(holdout_mean, holdout_logvar, holdout_labels)
self.curr_holdout_mse_loss = holdout_mse_loss.mean().item()
break_train = self._save_best(epoch, holdout_mse_loss)
if break_train:
break
self._load_states()
with torch.no_grad():
holdout_mean, holdout_logvar = self.ensemble_model(holdout_inputs, ret_log_var=True)
_, holdout_mse_loss = self.ensemble_model.loss(holdout_mean, holdout_logvar, holdout_labels)
sorted_loss, sorted_loss_idx = holdout_mse_loss.sort()
sorted_loss = sorted_loss.detach().cpu().numpy().tolist()
sorted_loss_idx = sorted_loss_idx.detach().cpu().numpy().tolist()
self.elite_model_idxes = sorted_loss_idx[:self.elite_size]
self.top_holdout_mse_loss = sorted_loss[0]
self.middle_holdout_mse_loss = sorted_loss[self.ensemble_size // 2]
self.bottom_holdout_mse_loss = sorted_loss[-1]
self.best_holdout_mse_loss = holdout_mse_loss.mean().item()
return {
'mse_loss': self.mse_loss,
'curr_holdout_mse_loss': self.curr_holdout_mse_loss,
'best_holdout_mse_loss': self.best_holdout_mse_loss,
'top_holdout_mse_loss': self.top_holdout_mse_loss,
'middle_holdout_mse_loss': self.middle_holdout_mse_loss,
'bottom_holdout_mse_loss': self.bottom_holdout_mse_loss,
}
def _save_states(self, ):
self._states = copy.deepcopy(self.state_dict())
def _save_state(self, id):
state_dict = self.state_dict()
for k, v in state_dict.items():
if 'weight' in k or 'bias' in k:
self._states[k].data[id] = copy.deepcopy(v.data[id])
def _load_states(self):
self.load_state_dict(self._states)
def _save_best(self, epoch, holdout_losses):
updated = False
for i in range(len(holdout_losses)):
current = holdout_losses[i]
_, best = self._snapshots[i]
improvement = (best - current) / best
if improvement > 0.01:
self._snapshots[i] = (epoch, current)
self._save_state(i)
# self._save_state(i)
updated = True
# improvement = (best - current) / best
if updated:
self._epochs_since_update = 0
else:
self._epochs_since_update += 1
return self._epochs_since_update > self.max_epochs_since_update