-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathclassifier.py
157 lines (133 loc) · 7 KB
/
classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import random
import numpy as np
import sys
from sklearn.metrics import accuracy_score, precision_score
from sklearn.multioutput import RegressorChain, MultiOutputRegressor
from sklearn.neighbors import KNeighborsRegressor
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import Ridge
from sklearn.svm import SVR
import xgboost as xgb
from ReczillaClassifier.get_alg_feat_selection_data import alg_feature_selection_featurized
from ReczillaClassifier.dataset_families import get_all_datasets, dataset_family_lookup, get_dataset_families
from ReczillaClassifier.dataset_families import family_map as dataset_family_map
ALL_DATASET_FAMILIES = sorted(get_dataset_families() - set(['GoogleLocalReviewsReader']))
META_LEARNERS = ['xgboost', 'random', 'knn', 'linear']
METADATASET_NAME = "metadata-v2"
def run_metalearner(model_name, X_train, y_train, X_test, return_model=False):
"""
Args:
model_name: "xgboost", "knn"
X_train: training data
y_train: training target
X_test: testing data. If none, predictions will be generated on train set.
Returns:
preds: predictions (on either test set or train set).
"""
if X_test is None:
X_test = X_train
if model_name == "xgboost":
base_model = xgb.XGBRegressor(objective='reg:squarederror')
model = RegressorChain(base_model)
model.fit(X_train, y_train)
preds = model.predict(X_test)
elif model_name == "knn":
n_neighbors = 5
n_training_samples = X_train.shape[0]
model = Pipeline([("scaler", StandardScaler()),
("knn", KNeighborsRegressor(n_neighbors=min(n_neighbors, n_training_samples)))])
model.fit(X_train, y_train)
preds = model.predict(X_test)
elif model_name == "linear":
model = Pipeline([("scaler", StandardScaler()),
("linear", MultiOutputRegressor(Ridge(alpha=10))),
])
model.fit(X_train, y_train)
preds = model.predict(X_test)
elif model_name == "svm-poly":
model = Pipeline([("scaler", StandardScaler()),
("svm-poly", MultiOutputRegressor(SVR(kernel='poly'))),
])
model.fit(X_train, y_train)
preds = model.predict(X_test)
elif model_name == "random":
num_algs = len(y_train[0])
preds = []
for x_t in X_test:
one_hot = [0] * num_algs
one_hot[random.randint(0, num_algs-1)] = 1
preds.append(one_hot)
model = None # No model can be returned
else:
raise NotImplementedError("{} not implemented".format(model_name))
if not return_model:
return preds
else:
return preds, model
def perc_diff_from_best_global(outputs, y_test, y_range_test):
diff = []
for output, label_score, score_range in zip(outputs, y_test, y_range_test):
best, worst = score_range
m = abs(best - label_score[output]) / (best - worst)
diff.append(m)
return np.nanmean(diff)
def perc_diff_from_worst_global(outputs, y_test, y_range_test):
diff = []
for output, label_score, score_range in zip(outputs, y_test, y_range_test):
best, worst = score_range
m = abs(label_score[output] - worst) / (best - worst)
diff.append(m)
return np.nanmean(diff)
def perc_diff_from_best_subset(labels, outputs, y_test, preds):
diff = []
for label, output, label_score, output_score in zip(labels, outputs, y_test, preds):
m = abs(label_score[label] - label_score[output]) / (label_score[label] - min(label_score))
diff.append(m)
return np.nanmean(diff)
def perc_diff_from_worst_subset(labels, outputs, y_test, preds):
diff = []
for label, output, label_score, output_score in zip(labels, outputs, y_test, preds):
m = abs(label_score[output] - min(label_score)) / (label_score[label] - min(label_score))
diff.append(m)
return np.nanmean(diff)
def get_mae(labels, outputs, y_test, preds):
mae = []
for label, output, label_score, output_score in zip(labels, outputs, y_test, preds):
mae.append(np.mean(np.abs(label_score - output_score)))
return np.nanmean(mae)
def get_perf_of_best_predicted(labels, outputs, y_test, preds):
perf_best_predicted = []
for label, output, label_score, output_score in zip(labels, outputs, y_test, preds):
perf_best_predicted.append(label_score[output])
return np.nanmean(perf_best_predicted)
def get_metrics(y_test, y_range_test, preds):
metrics = {}
labels = [np.argmax(yt) for yt in y_test]
outputs = [np.argmax(p) for p in preds]
# TODO: does this collect the two accuracy metrics described in the paper? ("%OPT" and "AlgAccuracy"). we might need
# to add some logic to check if the selected algorithm matches the ground-truth-best algorithm.
# metrics['precision'] = np.mean(precision_score(labels, outputs, average=None))
metrics['accuracy'] = accuracy_score(labels, outputs)
metrics["perc_diff_from_best_global"] = perc_diff_from_best_global(outputs, y_test, y_range_test)
#metrics["perc_diff_from_worst_global"] = perc_diff_from_worst_global(outputs, y_test, y_range_test)
metrics['perc_diff_from_best_subset'] = perc_diff_from_best_subset(labels, outputs, y_test, preds)
#metrics['perc_diff_from_worst_subset'] = perc_diff_from_worst_subset(labels, outputs, y_test, preds)
metrics['mae'] = get_mae(labels, outputs, y_test, preds)
metrics['perf_of_best_predicted'] = get_perf_of_best_predicted(labels, outputs, y_test, preds)
return metrics
def get_cached_featurized(metric_name, test_datasets, dataset_name, cached_featurized = {}, train_datasets=None, fixed_algs_feats=False, num_algs=10, num_feats=10, random_algs=False, random_feats=False, compare_cunha=None):
test_families = tuple(sorted(set(dataset_family_lookup(test_dataset) for test_dataset in test_datasets)))
if test_families not in cached_featurized or train_datasets is not None:
cached_featurized[test_families] = alg_feature_selection_featurized(metric_name, test_datasets, dataset_name, train_datasets,
fixed_algs_feats=fixed_algs_feats, num_algs=num_algs, num_feats=num_feats,
random_algs=random_algs,
random_feats=random_feats,
compare_cunha=compare_cunha
)
return cached_featurized[test_families]
if __name__ == "__main__":
X_train, y_train, X_test, y_test, y_best_test = get_cached_featurized("test_metric_PRECISION_cut_10", ["AnimeReader"], METADATASET_NAME)
preds = run_metalearner("logreg", X_train, y_train, X_test)
metrics = get_metrics(y_test, y_best_test, preds)
print(f"metrics: {metrics}")