-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_experiments.py
66 lines (58 loc) · 3.49 KB
/
run_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import PretrainedCNNFeatureExtractor, TrainableCustomCNN, VariationalAutoencoder
from utils import hyperparam_search
from stable_baselines3.common.env_util import make_atari_env
from stable_baselines3.common.vec_env import VecFrameStack
from HParamCallback import HParamCallback
from VariationalAutoencoder import VAETrainingCallback
selected_features_extractor_class, num_features, base_model, weights, preprocessing_function = None, None, None, None, None
default_callbacks = [HParamCallback()]
LOG_DIR = "./log"
timesteps = 3_000_000
lr_values = [2.5e-4]
net_arch_values = [[128, 128]]
batch_size_values = [128]
num_features_list = [256, 512, 1024]
kl_divergence_weights = [1, 0.5, 0.25, 0.125]
environments = ["BreakoutNoFrameskip-v4", "BoxingNoFrameskip-v4"]
# train CNNs
selected_features_extractor_class = TrainableCustomCNN.TrainableCustomCNN
for num_features in num_features_list:
policy_kwargs = dict(
features_extractor_class=selected_features_extractor_class,
features_extractor_kwargs=dict(features_dim=num_features, base_model=base_model, weights=weights,
preprocessing_function=preprocessing_function)
)
for env_name in environments:
vec_env = make_atari_env(env_name, n_envs=4)
fs_vec_env = VecFrameStack(vec_env, 4, channels_order='first')
hyperparam_search(fs_vec_env, lr_values, batch_size_values, net_arch_values, policy_kwargs, timesteps, model_prefix=f"{env_name}_CNN_{num_features}")
# train VAE
selected_features_extractor_class = VariationalAutoencoder.VariationalAutoencoderFeaturesExtractor
for num_features in num_features_list:
for kl_divergence_weight in kl_divergence_weights:
policy_kwargs = dict(
features_extractor_class=selected_features_extractor_class,
features_extractor_kwargs=dict(features_dim=num_features, base_model=base_model, weights=weights,
preprocessing_function=preprocessing_function, kl_divergence_weight=kl_divergence_weight)
)
vae_training_callback = VAETrainingCallback()
vae_callbacks = default_callbacks + [vae_training_callback]
for env_name in environments:
vec_env = make_atari_env(env_name, n_envs=4)
fs_vec_env = VecFrameStack(vec_env, 4, channels_order='first')
hyperparam_search(fs_vec_env, lr_values, batch_size_values, net_arch_values, policy_kwargs, timesteps, model_prefix=f"{env_name}_VAE_{num_features}_kl_div_weight_{kl_divergence_weight}", custom_callback=vae_callbacks)
# train using pretrained CNN
network = "squeezenet1"
selected_features_extractor_class = PretrainedCNNFeatureExtractor.PretrainedCNNFeatureExtractor
num_features = PretrainedCNNFeatureExtractor.NUM_FEATURES_MAP[network]
base_model, weights, _ = PretrainedCNNFeatureExtractor.NETWORK_VARS_MAP[network]()
preprocessing_function = PretrainedCNNFeatureExtractor.create_grayscale_preprocessing(weights)
policy_kwargs = dict(
features_extractor_class=selected_features_extractor_class,
features_extractor_kwargs=dict(features_dim=num_features, base_model=base_model, weights=weights,
preprocessing_function=preprocessing_function)
)
for env_name in environments:
vec_env = make_atari_env(env_name, n_envs=4)
fs_vec_env = VecFrameStack(vec_env, 4, channels_order='first')
hyperparam_search(fs_vec_env, lr_values, batch_size_values, net_arch_values, policy_kwargs, timesteps, model_prefix=f"{env_name}_{network}_{num_features}_")