-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbibliography.bib
376 lines (333 loc) · 13.5 KB
/
bibliography.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
@article{evans2020double,
title={Double responding: A new constraint for models of speeded decision making},
author={Evans, Nathan J and Dutilh, Gilles and Wagenmakers, Eric-Jan and {van der Maas}, Han LJ},
journal={Cognitive psychology},
volume={121},
pages={101292},
year={2020},
publisher={Elsevier}
}
@article{dutilh2009diffusion,
title={A diffusion model decomposition of the practice effect},
author={Dutilh, Gilles and Vandekerckhove, Joachim and Tuerlinckx, Francis and Wagenmakers, Eric-Jan},
journal={Psychonomic Bulletin \& Review},
volume={16},
pages={1026--1036},
year={2009},
publisher={Springer}
}
@article{villarreal2024bayesian,
title={Bayesian graphical modeling with the circular drift diffusion model},
author={Villarreal, Manuel and Ch{\'a}vez De la Pe{\~n}a, Adriana F and Mistry, Percy K and Menon, Vinod and Vandekerckhove, Joachim and Lee, Michael D},
journal={Computational Brain \& Behavior},
volume={7},
number={2},
pages={181--194},
year={2024},
publisher={Springer}
}
@article{rasanan2024beyond,
title={Beyond discrete-choice options},
author={Rasanan, Amir Hosein Hadian and Evans, Nathan J and Fontanesi, Laura and Manning, Catherine and Huang-Pollock, Cynthia and Matzke, Dora and Heathcote, Andrew and Rieskamp, J{\"o}rg and Speekenbrink, Maarten and Frank, Michael J and others},
journal={Trends in Cognitive Sciences},
year={2024},
publisher={Elsevier}
}
@article{engbert2005swift,
title={SWIFT: a dynamical model of saccade generation during reading.},
author={Engbert, Ralf and Nuthmann, Antje and Richter, Eike M and Kliegl, Reinhold},
journal={Psychological review},
volume={112},
number={4},
pages={777},
year={2005},
publisher={American Psychological Association}
}
@article{engbert2024tutorial,
title={A tutorial on Bayesian inference for dynamical modeling of eye-movement control during reading},
author={Engbert, Ralf and Rabe, Maximilian M},
journal={Journal of Mathematical Psychology},
volume={119},
pages={102843},
year={2024},
publisher={Elsevier}
}
@inproceedings{schmitt2023detecting,
title={Detecting model misspecification in amortized {B}ayesian inference with neural networks},
author={Schmitt, Marvin and B{\"u}rkner, Paul-Christian and K{\"o}the, Ullrich and Radev, Stefan T},
booktitle={DAGM German Conference on Pattern Recognition},
pages={541--557},
year={2023},
organization={Springer}
}
@article{talts2018validating,
title={Validating Bayesian inference algorithms with simulation-based calibration},
author={Talts, Sean and Betancourt, Michael and Simpson, Daniel and Vehtari, Aki and Gelman, Andrew},
journal={arXiv preprint arXiv:1804.06788},
year={2018}
}
@article{schad2021toward,
title={Toward a principled {B}ayesian workflow in cognitive science.},
author={Schad, Daniel J and Betancourt, Michael and Vasishth, Shravan},
journal={Psychological methods},
volume={26},
number={1},
pages={103},
year={2021},
publisher={American Psychological Association}
}
@misc{radev2023bayesflow,
title = {BayesFlow: Amortized Bayesian Workflows With Neural Networks},
author = {Stefan T Radev and Marvin Schmitt and Lukas Schumacher and Lasse Elsem\"{u}ller and Valentin Pratz and Yannik Sch\"{a}lte and Ullrich K\"{o}the and Paul-Christian B\"{u}rkner},
year = {2023},
publisher= {arXiv},
url={https://arxiv.org/abs/2306.16015}
}
@inproceedings{radev2023jana,
title={{JANA}: Jointly Amortized Neural Approximation of Complex Bayesian Models},
author={Stefan T. Radev and Marvin Schmitt and Valentin Pratz and Umberto Picchini and Ullrich Koethe and Paul-Christian B{\"u}rkner},
booktitle={The 39th Conference on Uncertainty in Artificial Intelligence},
year={2023},
url={https://openreview.net/forum?id=dS3wVICQrU0}
}
@article{radev2020bayesflow,
title={{BayesFlow}: Learning complex stochastic models with invertible neural networks},
author={Radev, Stefan T. and Mertens, Ulf K. and Voss, Andreas and Ardizzone, Lynton and K{\"o}the, Ullrich},
journal={IEEE transactions on neural networks and learning systems},
volume={33},
number={4},
pages={1452--1466},
year={2020},
publisher={IEEE}
}
@article{radev2021amortized,
title={Amortized bayesian model comparison with evidential deep learning},
author={Radev, Stefan T and D’Alessandro, Marco and Mertens, Ulf K and Voss, Andreas and K{\"o}the, Ullrich and B{\"u}rkner, Paul-Christian},
journal={IEEE Transactions on Neural Networks and Learning Systems},
volume={34},
number={8},
pages={4903--4917},
year={2021},
publisher={IEEE}
}
@article{elsemuller2024deep,
title={A deep learning method for comparing Bayesian hierarchical models.},
author={Elsem{\"u}ller, Lasse and Schnuerch, Martin and B{\"u}rkner, Paul-Christian and Radev, Stefan T},
journal={Psychological Methods},
volume={Advance online publication.},
year={2024},
doi={10.1037/met0000645}
}
@article{sainsbury2024likelihood,
title={Likelihood-free parameter estimation with neural Bayes estimators},
author={Sainsbury-Dale, Matthew and Zammit-Mangion, Andrew and Huser, Rapha{\"e}l},
journal={The American Statistician},
volume={78},
number={1},
pages={1--14},
year={2024},
publisher={Taylor \& Francis}
}
@article{habermann2024amortized,
title={Amortized Bayesian Multilevel Models},
author={Habermann, Daniel and Schmitt, Marvin and K{\"u}hmichel, Lars and Bulling, Andreas and Radev, Stefan T and B{\"u}rkner, Paul-Christian},
journal={arXiv preprint arXiv:2408.13230},
year={2024}
}
@article{kucharsky2025amortized,
title={Amortized Bayesian Mixture Models},
author={Kucharsk{\'y}, {\v{S}}imon and B{\"u}rkner, Paul Christian},
journal={arXiv preprint arXiv:2501.10229},
year={2025}
}
@article{van2024reclaiming,
title={Reclaiming {AI} as a theoretical tool for cognitive science},
author={{van Rooij}, Iris and Guest, Olivia and Adolfi, Federico and de Haan, Ronald and Kolokolova, Antonina and Rich, Patricia},
journal={Computational Brain \& Behavior},
volume={7},
number={4},
pages={616--636},
year={2024},
publisher={Springer}
}
@incollection{simon1983should,
title={Why should machines learn?},
author={Simon, Herbert A},
booktitle={Machine learning},
pages={25--37},
year={1983},
publisher={Elsevier}
}
@article{sarker2021deep,
title={Deep learning: {A} comprehensive overview on techniques, taxonomy, applications and research directions},
author={Sarker, Iqbal H},
journal={SN computer science},
volume={2},
number={6},
pages={1--20},
year={2021},
publisher={Springer}
}
@article{shahab2024large,
title={Large language models: a primer and gastroenterology applications},
author={Shahab, Omer and El Kurdi, Bara and Shaukat, Aasma and Nadkarni, Girish and Soroush, Ali},
journal={Therapeutic Advances in Gastroenterology},
volume={17},
pages={17562848241227031},
year={2024},
publisher={SAGE Publications Sage UK: London, England}
}
@article{kingma2014adam,
title={Adam: A method for stochastic optimization},
author={Kingma, Diederik P and Ba, Jimmy},
journal={arXiv preprint arXiv:1412.6980},
year={2014}
}
@article{urban2021deep,
title={Deep learning: A primer for psychologists.},
author={Urban, Christopher J and Gates, Kathleen M},
journal={Psychological Methods},
volume={26},
number={6},
pages={743},
year={2021},
publisher={American Psychological Association}
}
@book{chollet2021deep,
title={Deep learning with {P}ython},
author={Chollet, Fran{\c{c}}ois},
year={2021},
publisher={Manning Publications},
isbn={9781617296864}
}
@article{kunc2024three,
title={Three decades of activations: A comprehensive survey of 400 activation functions for neural networks},
author={Kunc, Vladim{\'\i}r and Kl{\'e}ma, Ji{\v{r}}{\'\i}},
journal={arXiv preprint arXiv:2402.09092},
year={2024}
}
@article{cranmer2020frontier,
title={The frontier of simulation-based inference},
author={Cranmer, Kyle and Brehmer, Johann and Louppe, Gilles},
journal={Proceedings of the National Academy of Sciences},
volume={117},
number={48},
pages={30055--30062},
year={2020},
publisher={National Academy of Sciences}
}
@book{li2009markov,
title={Markov random field modeling in image analysis},
author={Li, Stan Z},
year={2009},
publisher={Springer Science \& Business Media}
}
@article{goodfellow2014generative,
title={Generative adversarial nets},
author={Goodfellow, Ian J and Pouget-Abadie, Jean and Mirza, Mehdi and Xu, Bing and Warde-Farley, David and Ozair, Sherjil and Courville, Aaron and Bengio, Yoshua},
journal={Advances in neural information processing systems},
volume={27},
year={2014}
}
@misc{kingma2013auto,
title={Auto-encoding variational bayes},
author={Kingma, Diederik P and Welling, Max and others},
year={2013},
publisher={Banff, Canada}
}
@article{song2020score,
title={Score-based generative modeling through stochastic differential equations},
author={Song, Yang and Sohl-Dickstein, Jascha and Kingma, Diederik P and Kumar, Abhishek and Ermon, Stefano and Poole, Ben},
journal={arXiv preprint arXiv:2011.13456},
year={2020}
}
@article{song2023consistency,
title={Consistency models},
author={Song, Yang and Dhariwal, Prafulla and Chen, Mark and Sutskever, Ilya},
year={2023}
}
@article{papamakarios2021normalizing,
title={Normalizing flows for probabilistic modeling and inference},
author={Papamakarios, George and Nalisnick, Eric and Rezende, Danilo Jimenez and Mohamed, Shakir and Lakshminarayanan, Balaji},
journal={Journal of Machine Learning Research},
volume={22},
number={57},
pages={1--64},
year={2021}
}
@article{lipman2022flow,
title={Flow matching for generative modeling},
author={Lipman, Yaron and Chen, Ricky TQ and Ben-Hamu, Heli and Nickel, Maximilian and Le, Matt},
journal={arXiv preprint arXiv:2210.02747},
year={2022}
}
@article{kobyzev2020normalizing,
title={Normalizing flows: An introduction and review of current methods},
author={Kobyzev, Ivan and Prince, Simon JD and Brubaker, Marcus A},
journal={IEEE transactions on pattern analysis and machine intelligence},
volume={43},
number={11},
pages={3964--3979},
year={2020},
publisher={IEEE}
}
@article{durkan2019neural,
title={Neural spline flows},
author={Durkan, Conor and Bekasov, Artur and Murray, Iain and Papamakarios, George},
journal={Advances in neural information processing systems},
volume={32},
year={2019}
}
@article{muller2019neural,
title={Neural importance sampling},
author={M{\"u}ller, Thomas and McWilliams, Brian and Rousselle, Fabrice and Gross, Markus and Nov{\'a}k, Jan},
journal={ACM Transactions on Graphics (ToG)},
volume={38},
number={5},
pages={1--19},
year={2019},
publisher={ACM New York, NY, USA}
}
@article{dinh2016density,
title={Density estimation using real nvp},
author={Dinh, Laurent and Sohl-Dickstein, Jascha and Bengio, Samy},
journal={arXiv preprint arXiv:1605.08803},
year={2016}
}
@misc{lipman2024flowmatchingguidecode,
title={Flow Matching Guide and Code},
author={Yaron Lipman and Marton Havasi and Peter Holderrieth and Neta Shaul and Matt Le and Brian Karrer and Ricky T. Q. Chen and David Lopez-Paz and Heli Ben-Hamu and Itai Gat},
year={2024},
eprint={2412.06264},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2412.06264},
}
@misc{fjelde2024introduction,
title = {An {Introduction} to {Flow} {Matching}},
url = {https://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-matching.html},
author = {Fjelde, Tor and Mathieu, Emile and Dutordoir, Vincent},
year={2024}
}
@article{pooladian2023multisample,
title={Multisample flow matching: Straightening flows with minibatch couplings},
author={Pooladian, Aram-Alexandre and Ben-Hamu, Heli and Domingo-Enrich, Carles and Amos, Brandon and Lipman, Yaron and Chen, Ricky TQ},
journal={arXiv preprint arXiv:2304.14772},
year={2023}
}
@article{vaswani2017attention,
title={Attention is all you need},
author={Vaswani, Ashish and Shazeer, Noam and Parmar, Niki and Uszkoreit, Jakob and Jones, Llion and Gomez, Aidan N and Kaiser, {\L}ukasz and Polosukhin, Illia},
journal={Advances in neural information processing systems},
volume={30},
year={2017}
}
@inproceedings{zaheer_deep_2017,
title = {Deep {Sets}},
volume = {30},
abstract = {We study the problem of designing models for machine learning tasks defined on sets. In contrast to the traditional approach of operating on fixed dimensional vectors, we consider objective functions defined on sets and are invariant to permutations. Such problems are widespread, ranging from the estimation of population statistics, to anomaly detection in piezometer data of embankment dams, to cosmology. Our main theorem characterizes the permutation invariant objective functions and provides a family of functions to which any permutation invariant objective function must belong. This family of functions has a special structure which enables us to design a deep network architecture that can operate on sets and which can be deployed on a variety of scenarios including both unsupervised and supervised learning tasks. We demonstrate the applicability of our method on population statistic estimation, point cloud classification, set expansion, and outlier detection.},
booktitle = {Advances in {Neural} {Information} {Processing} {Systems}},
author = {Zaheer, Manzil and Kottur, Satwik and Ravanbakhsh, Siamak and Poczos, Barnabas and Salakhutdinov, Russ R and Smola, Alexander J},
year = {2017},
file = {Full Text PDF:/Users/simonkucharsky/Zotero/storage/LPWEVIE9/Zaheer et al. - 2017 - Deep Sets.pdf:application/pdf},
}