-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathKNN.R
123 lines (88 loc) · 2.58 KB
/
KNN.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#install.packages("ISLR")
library(ISLR)
#install.packages("tidyverse")
library(tidyverse)
#install.packages("funModeling")
library(funModeling)
#install.packages("caret")
library(caret)
#install.packages("pROC")
library(pROC)
#install.packages("class")
library(class)#knn icin
#install.packages("e1071")
library(e1071)#knn icin
#install.packages("kernlab")
library(kernlab) #svm icin
#install.packages("ROCR")
library(ROCR) #roc icin
#install.packages("neuralnet")
library(neuralnet)
#install.packages("GGally")
library(GGally)
#install.packages("nnet")
library(nnet)
#install.packages("rpart")
library(rpart)
#install.packages("cli")
library(cli)
#install.packages("tree")
library(tree)
#install.packages("rpart.plot")
library(rpart.plot)
#install.packages("randomForest")
library(randomForest)
#install.packages("gbm")
library(gbm)
#install.packages("xgboost")
library(xgboost)
#install.packages("DiagrammeR")
library(DiagrammeR)
#install.packages("mlbench")
library(mlbench)
rm(list = ls())
df <- Default
head(df)
train <- df[1:8000,]
test <- df[8001:10000,]
train_y <- train["default"]
test_y <- test["default"]
train_x <- train %>% dplyr::select(-default)
test_x <- test %>% dplyr::select(-default)
#knn algoritması
#knn için bütün değişkenlerin numerik olması gerekir.
#çünkü knn uzaklık metrikleri ile çalışır ve ölçebilmesi için numerik olması gerekir.
knn_train <- train
knn_test <- test
knn_train$student <- as.numeric(knn_train$student)
knn_test$student <- as.numeric(knn_test$student)
knn_test$default <- as.numeric(knn_test$default)
knn_train$default <- as.numeric(knn_train$default)
knn_train <- knn_train %>% select(-default)
knn_test <- knn_test %>% select(-default)
knn_model <- knn(train = knn_train, test = knn_test,
cl = train_y$default, k = 5)
class_error <- function(gercek, tahmin) {
return(
data.frame(sin_hatasi = mean(gercek != tahmin),
dogruluk = 1-mean(gercek != tahmin)))
}
class_err <- function(gercek, tahmin) {
mean(gercek != tahmin)
}
summary(knn_model)
summary(test_y$default)
deger <- class_error(train_y$default, knn_model)
deger
ctrl <- trainControl(method = "cv", number = 10, search = "grid",
summaryFunction = twoClassSummary,
classProbs = T,
savePredictions = TRUE)
knn_grid <- data.frame(k=c(1:20))
knn_fit <- train(knn_train, train_y$default,
method="knn",
trControl = ctrl,
metric="ROC",
preProc = c("center", "scale"),
tuneGrid=knn_grid)
plot(knn_fit)