-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
248 lines (219 loc) · 11.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import argparse
import datetime
import os.path as osp
import platform
import random
import time
import numpy as np
import torch
from torch.utils.data import DataLoader
import model as models
from data import PFBP
from model.dynamic_maml import available_dymodes
from model.resnet import available_backbones
from util.logger import setup_logger
from util.misc import ensure_path, Averager
from util.tf_logger import TFLogger
from util.timer import timer
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--max-epoch', type=int, help='epoch number', default=4)
parser.add_argument('--n-way', type=int, help='n way', default=3)
parser.add_argument('--k-spt', type=int, help='k shot for support set', default=1)
parser.add_argument('--k-qry', type=int, help='k shot for query set', default=5)
parser.add_argument('--imgsz', type=int, help='imgsz', default=256)
parser.add_argument('--imgc', type=int, help='imgc', default=3)
parser.add_argument('--task-num', type=int, help='meta batch size, namely task num', default=4)
parser.add_argument('--meta-lr', type=float, help='meta-level outer learning rate', default=0.001)
parser.add_argument('--update-lr', type=float, help='task-level inner update learning rate', default=0.01)
parser.add_argument('--update-step', type=int, help='task-level inner update steps', default=5)
parser.add_argument('--update-step-test', type=int, help='update steps for finetunning', default=10)
# Extra args
parser.add_argument('--backbone', type=str, default='resnet18', choices=available_backbones)
parser.add_argument('--model', type=str, default='DynamicMAML', choices=['MAML', 'DynamicMAML'])
parser.add_argument('--dy-mode', type=str, default='rebirth', choices=available_dymodes)
parser.add_argument('--data-root', type=str, default='./datasets')
parser.add_argument('--dataset', type=str, default='FBP5500')
parser.add_argument('--img-dir', type=str, default='faces')
parser.add_argument('--train-split-file', type=str, default='train_maml.txt')
parser.add_argument('--val-split-file', type=str, default='val_maml.txt')
parser.add_argument('--test-split-file', type=str, default='test_maml.txt')
parser.add_argument('--train-episodes', type=int, default=10000, help='total episodes for the train set')
parser.add_argument('--val-episodes', type=int, default=100, help='total episodes for the val set')
parser.add_argument('--test-episodes', type=int, default=100, help='total episodes for the test set')
parser.add_argument('--work-dir', type=str, default='./save')
parser.add_argument('--num-workers', type=int, default=6, help='number of workers for dataloader')
parser.add_argument('--print-freq', default=20, type=int, help='print batch log per ${print-freq} iter(s)')
# parser.add_argument('--eval-steps', default=500, type=int, help='do evaluation per ${print-freq} iter(s)')
parser.add_argument('--seed', default=2022, type=int, help='random seed for anything')
parser.add_argument('--pretrain-type', type=str, default='fea', choices=['imagenet', 'fea', 'none'])
parser.add_argument('--cpu-only', action='store_true', help='run all with CPU')
args = parser.parse_args()
if (platform.system()).upper() == 'WINDOWS':
args.num_workers = 0
# Seed for anything
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
# Make dirs
if 'DynamicMAML' not in args.model:
dy_mode = ''
else:
dy_mode = args.dy_mode
model_name = f'{dy_mode}{args.model}_{args.backbone}_{args.n_way}W{args.k_spt}S'
args.log_dir = osp.join(args.work_dir, args.dataset, model_name)
args.model_dir = osp.join(args.log_dir, 'models')
ensure_path(args.model_dir)
# Set data dir
args.dataset_dir = osp.join(args.data_root, args.dataset)
# Logger
logger = setup_logger(args.log_dir)
print('Args <========================')
optkeys = list(args.__dict__.keys())
optkeys.sort()
for key in optkeys:
print('{}: {}'.format(key, args.__dict__[key]))
# Model
print('Model <========================')
device = 'cpu' if args.cpu_only or (not torch.cuda.is_available()) else 'cuda'
if device == 'cpu':
print('Warning: Run with CPU!!!')
model = models.__dict__[args.model](args)
model = model.to(device)
# batchsz here means total episode number
print('Data <========================')
img_dir = osp.join(args.dataset_dir, args.img_dir)
train_split_file = osp.join(args.dataset_dir, args.train_split_file)
val_split_file = osp.join(args.dataset_dir, args.val_split_file)
test_split_file = osp.join(args.dataset_dir, args.test_split_file)
mini = PFBP.FBP(img_dir, mode='train', n_way=args.n_way, k_shot=args.k_spt,
k_query=args.k_qry, setname=train_split_file,
batchsz=args.train_episodes, resize=args.imgsz)
mini_val = PFBP.FBP(img_dir, mode='val', n_way=args.n_way, k_shot=args.k_spt,
k_query=args.k_qry, setname=val_split_file,
batchsz=args.val_episodes, resize=args.imgsz)
mini_test = PFBP.FBP(img_dir, mode='test', n_way=args.n_way, k_shot=args.k_spt,
k_query=args.k_qry, setname=test_split_file,
batchsz=args.test_episodes, resize=args.imgsz)
print(f'Dataset info: {args.dataset}, Train size:{len(mini)}, Val size:{len(mini_val)}, Val size:{len(mini_test)}.')
def save_model(epoch, step, cur_corr, name=None):
model_file = osp.join(args.model_dir, f'{name}.pth' if name else f'epoch-{epoch}.pth')
data_dict = {
'epoch': epoch,
'step': step,
'cur_corr': cur_corr,
'best_corr': best_corr,
'save_time': time.strftime('%Y-%m-%d %H:%M:%S'),
'state_dict': model.state_dict()
}
torch.save(data_dict, model_file)
# Tensorboard looger
tf_logger = TFLogger(args.log_dir)
# Timer
train_timer = timer()
epoch_timer = timer()
best_corr = [-1.0 for i in range(args.update_step + 1)]
global_step = 1
# maml
print('Start Training <========================')
train_timer.tic()
for epoch in range(args.max_epoch):
epoch_timer.tic()
print('\nStart Epoch: %d/%d' % (epoch + 1, args.max_epoch))
# fetch meta_batchsz num of episode each time
#print('Loading images')
db = DataLoader(mini, args.task_num, shuffle=True, num_workers=args.num_workers, pin_memory=True)
acc_all_train = ArrAverager(args.update_step)
loss_all_train = Averager()
for step, (x_spt, y_spt, x_qry, y_qry) in enumerate(db):
x_spt, y_spt, x_qry, y_qry = x_spt.to(device), y_spt.to(device), x_qry.to(device), y_qry.to(device)
if dy_mode:
loss, acc = model.meta_train(x_spt, y_spt, x_qry, y_qry, mode=dy_mode)
else:
loss, acc = model.meta_train(x_spt, y_spt, x_qry, y_qry)
acc_all_train.add(acc)
loss_all_train.add(loss.item())
if step % args.print_freq == 0:
train_corr = acc_all_train.item()
corr_str = ' '.join([f'{c:.4f}' for c in train_corr]) + f' ({train_corr[-1]-train_corr[0]:.4f})'
print('Epoch: {}, Batch: {}/{}, Steps: {}, Loss: {:.4f}, Corr: {}'
.format(epoch + 1, step + 1, len(db), global_step, loss_all_train.item(), corr_str))
acc_all_train = ArrAverager(args.update_step)
loss_all_train = Averager()
global_step += 1
print('==>Do evaluation')
db_val = DataLoader(mini_val, 1, shuffle=True, num_workers=args.num_workers, pin_memory=True)
db_test = DataLoader(mini_test, 1, shuffle=True, num_workers=args.num_workers, pin_memory=True)
acc_all_test = ArrAverager(args.update_step_test)
acc_all_val = ArrAverager(args.update_step_test)
### validation
for x_spt, y_spt, x_qry, y_qry in db_val:
x_spt, y_spt, x_qry, y_qry = x_spt.squeeze(0).to(device), y_spt.squeeze(0).to(device), \
x_qry.squeeze(0).to(device), y_qry.squeeze(0).to(device)
if dy_mode:
acc = model.meta_test(x_spt, y_spt, x_qry, y_qry, mode=dy_mode)['PC']
else:
acc = model.meta_test(x_spt, y_spt, x_qry, y_qry)['PC']
acc_all_val.add(acc)
### testing
for x_spt, y_spt, x_qry, y_qry in db_test:
x_spt, y_spt, x_qry, y_qry = x_spt.squeeze(0).to(device), y_spt.squeeze(0).to(device), \
x_qry.squeeze(0).to(device), y_qry.squeeze(0).to(device)
if dy_mode:
acc = model.meta_test(x_spt, y_spt, x_qry, y_qry, mode=dy_mode)['PC']
else:
acc = model.meta_test(x_spt, y_spt, x_qry, y_qry)['PC']
acc_all_test.add(acc)
# log data
train_loss = loss_all_train.item()
train_corr = acc_all_train.item()
val_corr = acc_all_val.item()
test_corr = acc_all_test.item()
train_corr_str = ' '.join([f'{c:.4f}' for c in train_corr]) + f' ({train_corr[-1] - train_corr[0]:.4f})'
val_corr_str = ' '.join([f'{c:.4f}' for c in val_corr]) + f' ({val_corr[-1] - val_corr[0]:.4f})'
test_corr_str = ' '.join([f'{c:.4f}' for c in test_corr]) + f' ({test_corr[-1] - test_corr[0]:.4f})'
if test_corr[-1] > best_corr[-1]:
best_corr = acc_all_test.item()
print(f'Saving the model at Epoch {epoch + 1} with best corr: {test_corr_str}')
save_model(epoch + 1, global_step, test_corr, 'best-corr')
best_corr_str = ' '.join([f'{c:.4f}' for c in best_corr]) + f' ({best_corr[-1] - best_corr[0]:.4f})'
train_time = train_timer.toc()
left_time = (train_time / global_step) * (len(db) * args.max_epoch - global_step)
# print
print(
f'\tEpoch {epoch + 1}/{args.max_epoch}, Batch: {step + 1}/{len(db)}, Steps: {global_step}\n'
f'\tTrain Used Time: {datetime.timedelta(seconds=train_time)} | Left Time: {datetime.timedelta(seconds=left_time)}\n'
f'\tTrain Loss: {train_loss:.3f}\n'
f'\tTrain Corr: {train_corr_str}\n'
f'\tVal Corr: {val_corr_str}\n'
f'\tTest Corr: {test_corr_str}\n'
f'\tBest Corr: {best_corr_str}\n')
# Log to tensorboard
tf_logger.write_scalar_dict({
'train/loss': train_loss,
'train/acc': {'step0': train_corr[0], f'step{args.update_step}': train_corr[-1]},
'val/acc': {'step0': val_corr[0], f'step{args.update_step}': val_corr[-1]},
'test/acc': {'step0': test_corr[0], f'step{args.update_step}': test_corr[-1]},
}, global_step)
# Calculate time
epoch_time = epoch_timer.toc()
train_time = datetime.timedelta(seconds=train_timer.toc())
left_time = datetime.timedelta(seconds=epoch_time * (args.max_epoch - epoch - 1))
print(
f'End Epoch: {epoch + 1}/{args.max_epoch} | Epoch Time: {epoch_time:.2f}s | Train Used Time: {train_time} | Left Time: {left_time}')
save_model(epoch + 1, global_step, test_corr, name='epoch-last')
class ArrAverager():
def __init__(self, steps):
self.n = 0.0
self.v = [0.0 for i in range(steps+1)]
def add(self, x):
assert len(x) == len(self.v)
for i in range(len(x)):
self.v[i] = (self.v[i] * self.n + x[i]) / (self.n + 1.0)
self.n += 1.0
def item(self):
return self.v
if __name__ == '__main__':
main()