-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
224 lines (203 loc) · 10.2 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import datetime
import platform
import random
import os.path as osp
from collections import defaultdict
import numpy as np
import torch
from torch.utils.data import DataLoader
import argparse
from data import PFBP
import model as models
# import os
# os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
from model.dynamic_maml import available_dymodes
from model.resnet import available_backbones
from util.file import exists_file
from util.log import CSVLogger
from util.logger import setup_logger
from util.misc import ensure_path
from util.timer import timer
from util.torchtool import load_checkpoint
class Averager():
def __init__(self, steps):
self.n = 0.0
self.v = [0.0 for i in range(steps + 1)]
def add(self, x):
for i in range(len(self.v)):
self.v[i] = (self.v[i] * self.n + x[i]) / (self.n + 1.0)
self.n += 1.0
def item(self):
return self.v
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--load-epoch', type=str, default='last')
parser.add_argument('--n-way', type=int, help='n way', default=5)
parser.add_argument('--k-spts', type=int, nargs='+', default=[1, 5, 10, 15, 20],
help='k shot for support set (test with multiple shots)')
parser.add_argument('--k-qry', type=int, help='k shot for query set', default=5)
parser.add_argument('--imgsz', type=int, help='imgsz', default=256)
parser.add_argument('--imgc', type=int, help='imgc', default=3)
parser.add_argument('--task-num', type=int, help='meta batch size, namely task num', default=4)
parser.add_argument('--meta-lr', type=float, help='meta-level outer learning rate', default=1e-3)
parser.add_argument('--update-lr', type=float, help='task-level inner update learning rate', default=0.01)
parser.add_argument('--update-step', type=int, help='task-level inner update steps', default=5)
parser.add_argument('--update-step_test', type=int, help='update steps for finetunning', default=10)
# Extra args
parser.add_argument('--backbone', type=str, default='resnet18', choices=available_backbones)
parser.add_argument('--model', type=str, default='DynamicMAML', choices=['MAML', 'DynamicMAML'])
parser.add_argument('--dy-mode', type=str, default='rebirth', choices=available_dymodes)
parser.add_argument('--data-root', type=str, default='./datasets')
parser.add_argument('--dataset', type=str, default='FBP5500')
parser.add_argument('--img-dir', type=str, default='faces')
parser.add_argument('--train-split-file', type=str, default='train_maml.txt')
parser.add_argument('--train-episodes', type=int, default=800, help='total episodes for the train set')
parser.add_argument('--test-split-file', type=str, default='test_maml.txt')
parser.add_argument('--test-episodes', type=int, default=400, help='total episodes for the test set')
parser.add_argument('--val-split-file', type=str, default='val_maml.txt')
parser.add_argument('--val-episodes', type=int, default=100, help='total episodes for the val set')
parser.add_argument('--work-dir', type=str, default='./save')
parser.add_argument('--num-workers', type=int, default=6, help='number of workers for dataloader')
parser.add_argument('--seed', default=2022, type=int, help='random seed for anything')
parser.add_argument('--pretrain-type', type=str, default='fea', choices=['imagenet', 'fea', 'none'])
parser.add_argument('--cpu-only', action='store_true', help='run all with CPU')
args = parser.parse_args()
if (platform.system()).upper() == 'WINDOWS':
args.num_workers = 0
# Seed for anything
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
# Make dirs
if 'DynamicMAML' not in args.model:
dy_mode = ''
else:
dy_mode = args.dy_mode
model_name = f'{dy_mode}{args.model}_{args.backbone}'
args.log_dir = osp.join(args.work_dir, args.dataset)
ensure_path(args.log_dir)
# Set data dir
args.dataset_dir = osp.join(args.data_root, args.dataset)
img_dir = osp.join(args.dataset_dir, args.img_dir)
train_split_file = osp.join(args.dataset_dir, args.train_split_file)
val_split_file = osp.join(args.dataset_dir, args.val_split_file)
test_split_file = osp.join(args.dataset_dir, args.test_split_file)
# Logger
logger = setup_logger(osp.join(args.log_dir, f'{model_name}_Summary.txt'))
print('Args <========================')
optkeys = list(args.__dict__.keys())
optkeys.sort()
for key in optkeys:
print('{}: {}'.format(key, args.__dict__[key]))
train_corrs = []
val_corrs = []
test_corrs = []
test_mse = []
test_rmse = []
print('Start Testing <========================')
# Timer
test_time = timer()
test_time.tic()
for shot in args.k_spts:
# Model
print('Model <========================')
device = 'cpu' if args.cpu_only or (not torch.cuda.is_available()) else 'cuda'
if device == 'cpu':
print('Warning: Run with CPU!!!')
args.k_spt = shot
model = models.__dict__[args.model](args)
model = model.to(device)
model_dir = osp.join(args.log_dir, f'{model_name}_{args.n_way}W{shot}S', 'models')
if args.load_epoch == 'best':
print(f'Using the model with best acc')
pth_file = osp.join(model_dir, 'best-corr.pth')
elif args.load_epoch == 'last':
print(f'Using the model at last epoch')
pth_file = osp.join(model_dir, 'epoch-last.pth')
else:
epoch = int(args.load_epoch)
print(f'Using the model at epoch {epoch}')
pth_file = osp.join(model_dir, f'epoch-{epoch}.pth')
if not exists_file(pth_file):
print(f'pth file({pth_file}) not found, skip to next shot')
# train_corrs.append('X/X\t\t\t')
# val_corrs.append('X/X\t\t\t')
test_corrs.append('X/X\t\t\t')
test_mse.append('X/X\t\t\t')
test_rmse.append('X/X\t\t\t')
continue
state_dict = load_checkpoint(pth_file)
print(
f'Model info: train with {state_dict["epoch"]} epochs and steps {state_dict["step"]}, cur corr: {state_dict["cur_corr"]}\n'
f'[best: {state_dict["best_corr"]}], save time: {state_dict["save_time"]}')
model.load_state_dict(state_dict['state_dict'])
model = model.to(device)
# Dataset
# mini_train = PFBP.FBP(img_dir, mode='test', n_way=args.n_way, k_shot=shot,
# k_query=args.k_qry, setname=train_split_file,
# batchsz=args.train_episodes, resize=args.imgsz)
# mini_val = PFBP.FBP(img_dir, mode='test', n_way=args.n_way, k_shot=shot,
# k_query=args.k_qry, setname=val_split_file,
# batchsz=args.val_episodes, resize=args.imgsz)
mini_test = PFBP.FBP(img_dir, mode='test', n_way=args.n_way, k_shot=shot,
k_query=args.k_qry, setname=test_split_file,
batchsz=args.test_episodes, resize=args.imgsz)
# db_train = DataLoader(mini_train, 1, shuffle=True, num_workers=args.num_workers, pin_memory=True)
# db_val = DataLoader(mini_val, 1, shuffle=True, num_workers=args.num_workers, pin_memory=True)
db_test = DataLoader(mini_test, 1, shuffle=True, num_workers=args.num_workers, pin_memory=True)
def test(name, db, corrs, mses, rmses):
acc_all = Averager(args.update_step_test)
mse_all = Averager(args.update_step_test)
rmse_all = Averager(args.update_step_test)
for x_spt, y_spt, x_qry, y_qry in db:
x_spt, y_spt, x_qry, y_qry = x_spt.squeeze(0).to(device), y_spt.squeeze(0).to(device), \
x_qry.squeeze(0).to(device), y_qry.squeeze(0).to(device)
if dy_mode:
acc = model.meta_test(x_spt, y_spt, x_qry, y_qry, mode=dy_mode)
else:
acc = model.meta_test(x_spt, y_spt, x_qry, y_qry)
acc_all.add(acc['PC'])
mse_all.add(acc['MAE'])
rmse_all.add(acc['RMSE'])
corr_all = acc_all.item()
mse_all = mse_all.item()
rmse_all = rmse_all.item()
corr_str = ' '.join([f'{c:.4f}' for c in corr_all]) + f' ({corr_all[-1] - corr_all[0]:.4f})'
print(f'Model: {model_name}, Split: {name}, Corrs: {corr_str}')
corrs.append(f'{corr_all[0]:.4f}/{corr_all[-1]:.4f}')
mses.append(f'{mse_all[0]:.4f}/{mse_all[-1]:.4f}')
rmses.append(f'{rmse_all[0]:.4f}/{rmse_all[-1]:.4f}')
# Do evaluation
# test('train', db_train, train_corrs)
# test('val', db_val, val_corrs)
test('test', db_test, test_corrs, test_mse, test_rmse)
print()
test_time = datetime.timedelta(seconds=test_time.toc())
# log
print(
f'Test Summary: Test Used Time: {test_time}')
print('Summary Result<========================')
print(f'Dataset:\t{args.dataset}')
print(f'N way:\t{args.n_way}')
print(f'Model:\t{args.model}({dy_mode})')
print(f'Backbone: {args.backbone}(pretrain type:{args.pretrain_type})')
print('Set/Shot\t' + '\t\t\t'.join([f'{i} shot' for i in args.k_spts]))
# print('train\t\t' + '\t'.join(train_corrs))
# print('val\t\t\t' + '\t'.join(val_corrs))
# print('test\t\t' + '\t'.join(test_corrs))
print('test')
print('PC\t\t' + '\t'.join(test_corrs))
print('MAE\t\t' + '\t'.join(test_mse))
print('RMSE\t\t' + '\t'.join(test_rmse))
csv = CSVLogger(osp.join(args.log_dir, f'{model_name}_Summary.csv'))
csv.write(['Dataset', args.dataset, 'N way', args.n_way, 'Model', f'{args.model}({dy_mode})', 'Backbone', f'{args.backbone}(pretrain type:{args.pretrain_type})'])
csv.write(['Set/Shot'] + [f'{i} shot' for i in args.k_spts])
# csv.write(['train'] + train_corrs)
# csv.write(['val'] + val_corrs)
csv.write(['test'])
csv.write(['PC'] + test_corrs)
csv.write(['MAE'] + test_mse)
csv.write(['RMSE'] + test_rmse)
csv.close()