-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinalDemo.py
82 lines (65 loc) · 3.62 KB
/
finalDemo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D
from tensorflow.keras.optimizers import RMSprop
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.callbacks import ReduceLROnPlateau
np.random.seed(2)
train = pd.read_csv("./input/train.csv")
test = pd.read_csv("./input/test.csv")
Y_train = train["label"] # 获得label
X_train = train.drop(labels=["label"], axis=1) # 获得label以外的东西,也即是数据
del train # 没用了
X_train.isnull().any().describe() # isnull是所有空数据,any是进行与运算,describe其实是用来查看第一个数据是什么的
test.isnull().any().describe()
X_train = X_train / 255.0
test = test / 255.0
X_train = X_train.values.reshape(-1, 28, 28, 1) # 这里就是按照28*28的图片大小进行压缩
test = test.values.reshape(-1, 28, 28, 1) # 这个地方的这种写法,能够成功地将图片转化成28*28 * N的格式
Y_train = to_categorical(Y_train, num_classes=10) # onhot
random_seed = 2
X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size=0.1, random_state=random_seed)
model = Sequential()
model.add(Conv2D(filters=32, kernel_size=(5, 5), padding='Same', activation='relu', input_shape=(28, 28, 1)))
model.add(Conv2D(filters=32, kernel_size=(5, 5), padding='Same', activation='relu'))
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(filters=64, kernel_size=(3, 3), padding='Same', activation='relu'))
model.add(Conv2D(filters=64, kernel_size=(3, 3), padding='Same', activation='relu'))
model.add(MaxPool2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(256, activation="relu"))
model.add(Dropout(0.5))
model.add(Dense(10, activation="softmax"))
optimizer = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)
model.compile(optimizer=optimizer, loss="categorical_crossentropy", metrics=["accuracy"])
learning_rate_reduction = ReduceLROnPlateau(monitor='val_accuracy', patience=3, verbose=1, factor=0.5, min_lr=0.00001)
epochs = 50 # 训练次数
batch_size = 256
datagen = ImageDataGenerator(
featurewise_center=False, # set input mean to 0 over the dataset
samplewise_center=False, # set each sample mean to 0
featurewise_std_normalization=False, # divide inputs by std of the dataset
samplewise_std_normalization=False, # divide each input by its std
zca_whitening=False, # apply ZCA whitening
rotation_range=10, # randomly rotate images in the range (degrees, 0 to 180)
zoom_range=0.1, # Randomly zoom image
width_shift_range=0.1, # randomly shift images horizontally (fraction of total width)
height_shift_range=0.1, # randomly shift images vertically (fraction of total height)
horizontal_flip=False, # randomly flip images
vertical_flip=False) # randomly flip images
datagen.fit(X_train)
# 开始训练
history = model.fit_generator(datagen.flow(X_train, Y_train, batch_size=batch_size),
epochs=epochs, validation_data=(X_val, Y_val),
verbose=2, steps_per_epoch=X_train.shape[0] // batch_size
, callbacks=[learning_rate_reduction])
results = model.predict(test)
results = np.argmax(results, axis=1)
results = pd.Series(results, name="Label")
submission = pd.concat([pd.Series(range(1, 28001), name="ImageId"), results], axis=1)
submission.to_csv('./output/wyh_result.csv', index=False)