-
Notifications
You must be signed in to change notification settings - Fork 415
/
Copy pathdreambooth.py
216 lines (180 loc) · 7.02 KB
/
dreambooth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# Copyright © 2022 BAAI. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License")
#
# https://huggingface.co/spaces/BAAI/dreambooth-altdiffusion/blob/main/train_dreambooth.py
import os
import sys
import random
import itertools
from pathlib import Path
import torch
from torch.utils.data import Dataset
from PIL import Image
from torchvision import transforms
from flagai.trainer import Trainer
from flagai.auto_model.auto_loader import AutoLoader
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
instance_data_dir = "./examples/AltDiffusion/instance_images"
instance_prompt = "<鸣人>男孩"
with_prior_preservation = False
class_data_dir = "Mix"
class_prompt = "男孩"
prior_loss_weight = 1.0
num_class_images = 10
resolution = 512
center_crop = True
train_text_encoder = False
train_only_unet = True
num_train_epochs = 500
batch_size = 4
learning_rate = 5e-6
adam_beta1 = 0.9
adam_beta2 = 0.999
adam_weight_decay = 1e-2
adam_epsilon = 1e-08
auto_loader = AutoLoader(task_name="text2img",
model_name="AltDiffusion")
model = auto_loader.get_model()
tokenizer = model.tokenizer
class DreamBoothDataset(Dataset):
def __init__(
self,
instance_data_root,
instance_prompt,
tokenizer,
class_data_root=None,
class_prompt=None,
size=512,
center_crop=False,
):
self.size = size
self.center_crop = center_crop
self.tokenizer = tokenizer
self.instance_data_root = Path(instance_data_root)
if not self.instance_data_root.exists():
raise ValueError("Instance images root doesn't exists.")
self.instance_images_path = list(Path(instance_data_root).iterdir())
self.num_instance_images = len(self.instance_images_path)
self.instance_prompt = instance_prompt
self._length = self.num_instance_images
if class_data_root is not None:
self.class_data_root = Path(class_data_root)
self.class_data_root.mkdir(parents=True, exist_ok=True)
self.class_images_path = list(self.class_data_root.iterdir())
random.shuffle(self.class_images_path)
self.num_class_images = len(self.class_images_path)
self._length = max(self.num_class_images, self.num_instance_images)
self.class_prompt = class_prompt
else:
self.class_data_root = None
self.image_transforms = transforms.Compose(
[
transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def __len__(self):
return self._length
def __getitem__(self, index):
example = {}
path = self.instance_images_path[index % self.num_instance_images]
instance_image = Image.open(path)
if not instance_image.mode == "RGB":
instance_image = instance_image.convert("RGB")
example["instance_images"] = self.image_transforms(instance_image)
example["instance_prompt_ids"] = self.tokenizer(
self.instance_prompt,
padding="do_not_pad",
truncation=True,
max_length=self.tokenizer.model_max_length,
).input_ids
print('*'*20, "instance_prompt=", self.instance_prompt)
example["caption"] = self.instance_prompt
if self.class_data_root:
class_image = Image.open(self.class_images_path[index % self.num_class_images])
if not class_image.mode == "RGB":
class_image = class_image.convert("RGB")
example["class_images"] = self.image_transforms(class_image)
example["class_prompt_ids"] = self.tokenizer(
self.class_prompt,
padding="do_not_pad",
truncation=True,
max_length=self.tokenizer.model_max_length,
).input_ids
return example
train_dataset = DreamBoothDataset(
instance_data_root=instance_data_dir,
instance_prompt=instance_prompt,
class_data_root=class_data_dir if with_prior_preservation else None,
class_prompt=class_prompt,
tokenizer=tokenizer,
size=resolution,
center_crop=center_crop,
)
def collate_fn(examples):
input_ids = [example["instance_prompt_ids"] for example in examples]
pixel_values = [example["instance_images"] for example in examples]
captions = [example["caption"] for example in examples]
# Concat class and instance examples for prior preservation.
# We do this to avoid doing two forward passes.
if with_prior_preservation:
input_ids += [example["class_prompt_ids"] for example in examples]
pixel_values += [example["class_images"] for example in examples]
pixel_values = torch.stack(pixel_values)
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
input_ids = tokenizer.pad({"input_ids": input_ids}, padding=True, return_tensors="pt").input_ids
batch = {
"input_ids": input_ids,
"pixel_values": pixel_values,
"caption": captions,
}
return batch
train_dataloader = torch.utils.data.DataLoader(
train_dataset, batch_size=batch_size, shuffle=True, collate_fn=collate_fn
)
vae = model.first_stage_model
text_encoder = model.cond_stage_model
unet = model.model.diffusion_model
vae.requires_grad_(False)
if not train_text_encoder:
text_encoder.requires_grad_(False)
optimizer_class = torch.optim.AdamW
params_to_optimize = (
itertools.chain(unet.parameters(),
text_encoder.parameters()) if train_text_encoder else unet.parameters())
optimizer = optimizer_class(
params_to_optimize,
lr=learning_rate,
betas=(adam_beta1, adam_beta2),
weight_decay=adam_weight_decay,
eps=adam_epsilon,
)
model.to(device)
for epoch in range(num_train_epochs):
unet.train()
if train_text_encoder:
text_encoder.train()
for step, batch in enumerate(train_dataloader):
#x = batch["pixel_values"].to(device)
#x = model.encode_first_stage(batch["pixel_values"]).to(device)
#c = batch["caption"]
x, c = model.get_input(batch, "pixel_values")
if with_prior_preservation:
x, x_prior = torch.chunk(x, 2, dim=0)
c, c_prior = torch.chunk(c, 2, dim=0)
loss, _ = model(x, c)
prior_loss, _ = model(x_prior, c_prior)
loss = loss + prior_loss_weight * prior_loss
else:
loss, _ = model(x, c)
print('*'*20, "loss=", str(loss.detach().item()))
loss.backward()
optimizer.step()
optimizer.zero_grad()
## mkdir ./checkpoints/DreamBooth and copy ./checkpoints/AltDiffusion to ./checkpoints/DreamBooth/AltDiffusion
## overwrite model.ckpt for latter usage
chekpoint_path = './checkpoints/DreamBooth/AltDiffusion/model.ckpt'
torch.save(model.state_dict(), chekpoint_path)