-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMM_project_ALL.py
242 lines (207 loc) · 9.36 KB
/
MM_project_ALL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import wave, os, gc
import numpy as np
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
from array import array
from PIL import Image, ImageDraw, ImageFont, ImageFilter
from PIL.ImageFilter import MinFilter, MaxFilter
from scipy import signal
from scipy.io import wavfile
from pydub import AudioSegment
from pydub.playback import play
from pytesseract import image_to_string
CURRENT_PATH = os.path.abspath(os.getcwd())
DATA_PATH = "/DATA/"
FONTS_PATH = "/Fonts/"
ORIGINAL_AUDIO_PATH = CURRENT_PATH + "/Tchaikovsky - Danza della fata confetto(44,1k).wav"
def text_on_img(filename, text, size=300, exstension=".pbm", freq="HF", font_size=50, font='FreeSansBold.ttf'): # HF = High Frequency, LF = Low Frequency
filename = CURRENT_PATH + DATA_PATH + "IMG/" +filename + "_" + freq + exstension
fnt = ImageFont.truetype(CURRENT_PATH + FONTS_PATH + font, font_size)
image = Image.new(mode = "RGB", size = (int(size/2)*len(text),size+font_size), color = "black")
draw = ImageDraw.Draw(image)
if freq == "HF":
draw.text((0,1), text.upper(), font=fnt, fill=(255,255,255))
elif freq == "LF":
draw.text((0,size-1), text.upper(), font=fnt, fill=(255,255,255))
image.save(filename)
print("text_on_img\t{}\tsaved".format(filename))
return filename
def make_wav_from_img(image_filename, sampling_freq=44100):
image = mpimg.imread(image_filename)
image = np.sum(image, axis = 2).T[:, ::-1]
image = image**3
w, h = image.shape
data = np.fft.irfft(image, h*2, axis=1).reshape((w*h*2))
data -= np.average(data)
data *= (2**15-1.)/np.amax(data)
data = array("h", np.int_(data)).tostring()
image_filename = image_filename.replace("IMG","WAV") + ".wav" #In order to change directory
output_file = wave.open(image_filename, "w")
output_file.setparams((1, 2, sampling_freq, 0, "NONE", "not compressed"))
output_file.writeframes(data)
output_file.close()
print ("make_wav_from_img\t{}\tsaved".format(image_filename))
return image_filename
def wav_overlay(wav_msg_path, original_audio=ORIGINAL_AUDIO_PATH):
sound1 = AudioSegment.from_wav(original_audio).set_channels(1)
sound2 = AudioSegment.from_wav(wav_msg_path)
tmpsound = sound1.overlay(sound2)
if os.path.exists(wav_msg_path):
os.remove(wav_msg_path)
wav_msg_path = wav_msg_path.replace("WAV", "WAV_OVERLAY")
#play(tmpsound)
tmpsound.export(wav_msg_path, format="wav")
print ("wav_overlay\t{}\tsaved".format((wav_msg_path.split("/"))[-1]))
return wav_msg_path
def calc_specto(wav_overlay_paths, img_wav_paths=[]):
#img_wav_specto = []
wav_overlay_specto = []
# The wav file must be mono, not stereo
'''
#Don't use it in bulk executions, they'r just for demo
samplingFrequency, signalData = wavfile.read(ORIGINAL_AUDIO_PATH)
frequencies, times, spectrogram = signal.spectrogram(signalData, samplingFrequency)
original_audio_specto = {
"name": (ORIGINAL_AUDIO_PATH.split("/"))[-1],
"frequencies": frequencies,
"times":times,
"spectrogram": spectrogram
}
for f_n in img_wav_paths:
samplingFrequency, signalData = wavfile.read(f_n)
frequencies, times, spectrogram = signal.spectrogram(signalData, samplingFrequency)
img_wav_specto.append({
"name": (f_n.split("/"))[-1],
"frequencies": frequencies,
"times":times,
"spectrogram": spectrogram
})
'''
for f_n in wav_overlay_paths:
samplingFrequency, signalData = wavfile.read(f_n)
frequencies, times, spectrogram = signal.spectrogram(signalData, samplingFrequency)
wav_overlay_specto.append({
"name": (f_n.split("/"))[-1],
"frequencies": frequencies,
"times":times,
"spectrogram": spectrogram
})
#return original_audio_specto, img_wav_specto, wav_overlay_specto
return wav_overlay_specto
def create_save_plot(wav_overlay_specto, original_audio_specto={}, img_wav_specto=[]):
for i in range(len(wav_overlay_specto)):
fig, axs = plt.subplots(1, 1, figsize=(150,72), squeeze=False)
fig.suptitle('Fabio Merola W82000188 - MM project - Steganografia audio')
axs[0, 0].pcolormesh(wav_overlay_specto[i]["times"], wav_overlay_specto[i]["frequencies"], np.log(wav_overlay_specto[i]["spectrogram"]))
axs[0, 0].set_title(wav_overlay_specto[i]["name"])
dim = axs[0, 0].get_window_extent().transformed(fig.dpi_scale_trans.inverted())
path = CURRENT_PATH + DATA_PATH + "IMG_SPECTO/" + wav_overlay_specto[i]["name"] + ".png"
fig.savefig(path, bbox_inches=dim)
fig.clear()
plt.close("all")
'''
#Don't use it in bulk executions, they'r just for demo
axs[0, 1].pcolormesh(wav_overlay_specto[2]["times"], wav_overlay_specto[2]["frequencies"], np.log(wav_overlay_specto[2]["spectrogram"]))
axs[0, 1].set_title(wav_overlay_specto[2]["name"])
dim = axs[0, 1].get_window_extent().transformed(fig.dpi_scale_trans.inverted())
path = CURRENT_PATH + DATA_PATH + "IMG_SPECTO/" + wav_overlay_specto[2]["name"] + ".png"
fig.savefig(path, bbox_inches=dim)
axs[0, 2].pcolormesh(wav_overlay_specto[4]["times"], wav_overlay_specto[4]["frequencies"], np.log(wav_overlay_specto[4]["spectrogram"]))
axs[0, 2].set_title(wav_overlay_specto[4]["name"])
dim = axs[0, 2].get_window_extent().transformed(fig.dpi_scale_trans.inverted())
path = CURRENT_PATH + DATA_PATH + "IMG_SPECTO/" + wav_overlay_specto[4]["name"] + ".png"
fig.savefig(path, bbox_inches=dim)
axs[1, 0].pcolormesh(wav_overlay_specto[1]["times"], wav_overlay_specto[1]["frequencies"], np.log(wav_overlay_specto[1]["spectrogram"]))
axs[1, 0].set_title(wav_overlay_specto[1]["name"])
dim = axs[1, 0].get_window_extent().transformed(fig.dpi_scale_trans.inverted())
path = CURRENT_PATH + DATA_PATH + "IMG_SPECTO/" + wav_overlay_specto[1]["name"] + ".png"
fig.savefig(path, bbox_inches=dim)
axs[1, 1].pcolormesh(wav_overlay_specto[3]["times"], wav_overlay_specto[3]["frequencies"], np.log(wav_overlay_specto[3]["spectrogram"]))
axs[1, 1].set_title(wav_overlay_specto[3]["name"])
dim = axs[1, 1].get_window_extent().transformed(fig.dpi_scale_trans.inverted())
path = CURRENT_PATH + DATA_PATH + "IMG_SPECTO/" + wav_overlay_specto[3]["name"] + ".png"
fig.savefig(path, bbox_inches=dim)
axs[1, 2].pcolormesh(wav_overlay_specto[5]["times"], wav_overlay_specto[5]["frequencies"], np.log(wav_overlay_specto[5]["spectrogram"]))
axs[1, 2].set_title(wav_overlay_specto[5]["name"])
dim = axs[1, 2].get_window_extent().transformed(fig.dpi_scale_trans.inverted())
path = CURRENT_PATH + DATA_PATH + "IMG_SPECTO/" + wav_overlay_specto[5]["name"] + ".png"
fig.savefig(path, bbox_inches=dim)
'''
def images_post_processing():
for filename in os.listdir(CURRENT_PATH + DATA_PATH + "IMG_SPECTO"):
if filename.endswith(".png"):
temp = Image.open(CURRENT_PATH + DATA_PATH + "IMG_SPECTO/" + filename)
temp = temp.convert('LA')
temp = temp.point(lambda p: 0 if p>=245 else p)
temp = temp.filter(MaxFilter(size=9)) #Dilatation
temp = temp.filter(MinFilter(size=9)) #Erosion
temp = temp.point(lambda p: 0 if p<205 else 255) #Tresholding
width, height = temp.size # Get dimensions
temp = temp.convert('RGB')
width /= 6
height /= 6
newsize = (width, height)
temp = temp.resize(newsize) #Resize for better OCR read
temp = temp.point(lambda p: 0 if p!=255 else 255) # delete interpolation artifacts
left = 1
top = 1
right = width-1
bottom = height-1
temp = temp.crop((left, top, right, bottom)) # This crop removes white borders in order to improve the reading of OCR
temp.save(CURRENT_PATH + DATA_PATH + "POST_P_IMG/" + filename + ".png")
def images_in_ocr():
for filename in os.listdir(CURRENT_PATH + DATA_PATH + "POST_P_IMG"):
if filename.endswith(".png"):
text = image_to_string(Image.open(CURRENT_PATH + DATA_PATH + "POST_P_IMG/"+filename))
print("- IMG: {}\n\t- OCR_TEXT: {}".format(filename.encode('ascii', 'replace'), text.encode('ascii', 'replace')))
if __name__ == '__main__':
folders_needed = ["IMG", "WAV", "WAV_OVERLAY", "IMG_SPECTO","POST_P_IMG"]
if not os.path.exists(CURRENT_PATH + DATA_PATH[:-1]):
os.mkdir(CURRENT_PATH + DATA_PATH[:-1])
for folder in folders_needed:
if not os.path.exists(CURRENT_PATH + DATA_PATH + folder):
os.mkdir(CURRENT_PATH + DATA_PATH + folder)
texts = [
"My Cup of Tea",
"Right Out of the Gate",
"Shot In the Dark",
"Rain on Your Parade",
"Dropping Like Flies",
"No Ifs, Ands, or Buts",
"Everything But The Kitchen Sink",
"Quality Time",
"Tug of War",
"Jig Is Up"
]
fonts = [
"FreeMono.ttf",
"FreeMonoBold.ttf",
"FreeSerif.ttf",
"FreeSerifBold.ttf",
"FreeSans.ttf",
"FreeSansBold.ttf",
]
f_dim = [25, 50, 75, 100]
print("\n\nSTARTING TEXT_ON_IMG\n\n")
img_paths = [
text_on_img(filename="{} - {}_{}".format(text[:5], (font.split("."))[0], str(f_d)),text=text, exstension=ext, freq=freq, font_size=f_d, font=font)
for text in texts
for font in fonts
for f_d in f_dim
for ext in [".png",".pbm",".jpeg"]
for freq in ["HF","LF"]
]
print("\n\nSTARTING MAKE_WAV_FROM_IMG\n\n")
img_wav_paths = [make_wav_from_img(img_p) for img_p in img_paths]
print("\n\nSTARTING WAV_OVERLAY\n\n")
wav_overlay_paths = [wav_overlay(w_m_path) for w_m_path in img_wav_paths]
print("\n\nSTARTING CALC_SPECTO\n\n")
#original_audio_specto, img_wav_specto, wav_overlay_specto = calc_specto(img_wav_paths, wav_overlay_paths)
wav_overlay_specto = calc_specto(wav_overlay_paths=wav_overlay_paths)
gc.collect()
print("\n\nSTARTING CREATE_SAVE_PLOT\n\n")
create_save_plot(wav_overlay_specto=wav_overlay_specto)
print("\n\nSTARTING IMAGES_POST_PROCESSING\n\n")
images_post_processing()
print("\n\nSTARTING IMAGES_IN_OCR\n\n")
images_in_ocr()