diff --git a/how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-with-data-dependency-steps.ipynb b/how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-with-data-dependency-steps.ipynb index 419303a42..587875733 100644 --- a/how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-with-data-dependency-steps.ipynb +++ b/how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-with-data-dependency-steps.ipynb @@ -230,7 +230,9 @@ "- **output_name:** Name of the output\n", "- **output_mode:** Specifies \"upload\" or \"mount\" modes for producing output (default: mount)\n", "- **output_path_on_compute:** For \"upload\" mode, the path to which the module writes this output during execution\n", - "- **output_overwrite:** Flag to overwrite pre-existing data" + "- **output_overwrite:** Flag to overwrite pre-existing data\n", + "\n", + "As PipelineData is using [DataReference](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.data.data_reference.datareference?view=azure-ml-py) to represent the data, which is not the recommanded approch, we will recommand you to use [pipeline_output_dataset](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-core/azureml.pipeline.core.pipeline_output_dataset?view=azure-ml-py) instead, once promoted to an Azure Machine Learning dataset, it will also be consumed as a Dataset instead of a DataReference in subsequent steps." ] }, { @@ -252,8 +254,12 @@ "# is_directory=None)\n", "\n", "# Naming the intermediate data as processed_data1 and assigning it to the variable processed_data1.\n", - "processed_data1 = PipelineData(\"processed_data1\",datastore=def_blob_store)\n", - "print(\"PipelineData object created\")" + "# Promote pipelinedata to pipeline_output_dataset, which will use dataset instead of data reference \n", + "\n", + "from azureml.pipeline.core.pipeline_output_dataset import PipelineOutputFileDataset\n", + "\n", + "processed_data1 = PipelineOutputFileDataset(PipelineData(\"processed_data1\",datastore=def_blob_store))\n", + "print(\"PipelineOutputFileDataset object created\")" ] }, { @@ -544,10 +550,13 @@ "Azure ML" ], "friendly_name": "Azure Machine Learning Pipelines with Data Dependency", + "interpreter": { + "hash": "3e9e0e270b75c5e6da2e22113ba4f77b864d68f95da6601809c29e46c73ae6bb" + }, "kernelspec": { "display_name": "Python 3.6", "language": "python", - "name": "python36" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -559,7 +568,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.7.8" }, "order_index": 2, "star_tag": [ @@ -572,4 +581,4 @@ }, "nbformat": 4, "nbformat_minor": 2 -} \ No newline at end of file +}