-
Notifications
You must be signed in to change notification settings - Fork 2.7k
/
Copy pathpytorch_inceptionet.py
161 lines (128 loc) · 5.37 KB
/
pytorch_inceptionet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
"""
An implementation of GoogLeNet / InceptionNet from scratch.
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
* 2020-04-07 Initial coding
* 2022-12-20 Update comments, code revision, checked still works with latest PyTorch version
"""
import torch
from torch import nn
class GoogLeNet(nn.Module):
def __init__(self, aux_logits=True, num_classes=1000):
super(GoogLeNet, self).__init__()
assert aux_logits == True or aux_logits == False
self.aux_logits = aux_logits
# Write in_channels, etc, all explicit in self.conv1, rest will write to
# make everything as compact as possible, kernel_size=3 instead of (3,3)
self.conv1 = conv_block(
in_channels=3,
out_channels=64,
kernel_size=7,
stride=2,
padding=3,
)
self.maxpool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.conv2 = conv_block(64, 192, kernel_size=3, stride=1, padding=1)
self.maxpool2 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
# In this order: in_channels, out_1x1, red_3x3, out_3x3, red_5x5, out_5x5, out_1x1pool
self.inception3a = Inception_block(192, 64, 96, 128, 16, 32, 32)
self.inception3b = Inception_block(256, 128, 128, 192, 32, 96, 64)
self.maxpool3 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.inception4a = Inception_block(480, 192, 96, 208, 16, 48, 64)
self.inception4b = Inception_block(512, 160, 112, 224, 24, 64, 64)
self.inception4c = Inception_block(512, 128, 128, 256, 24, 64, 64)
self.inception4d = Inception_block(512, 112, 144, 288, 32, 64, 64)
self.inception4e = Inception_block(528, 256, 160, 320, 32, 128, 128)
self.maxpool4 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.inception5a = Inception_block(832, 256, 160, 320, 32, 128, 128)
self.inception5b = Inception_block(832, 384, 192, 384, 48, 128, 128)
self.avgpool = nn.AvgPool2d(kernel_size=7, stride=1)
self.dropout = nn.Dropout(p=0.4)
self.fc1 = nn.Linear(1024, num_classes)
if self.aux_logits:
self.aux1 = InceptionAux(512, num_classes)
self.aux2 = InceptionAux(528, num_classes)
else:
self.aux1 = self.aux2 = None
def forward(self, x):
x = self.conv1(x)
x = self.maxpool1(x)
x = self.conv2(x)
x = self.maxpool2(x)
x = self.inception3a(x)
x = self.inception3b(x)
x = self.maxpool3(x)
x = self.inception4a(x)
# Auxiliary Softmax classifier 1
if self.aux_logits and self.training:
aux1 = self.aux1(x)
x = self.inception4b(x)
x = self.inception4c(x)
x = self.inception4d(x)
# Auxiliary Softmax classifier 2
if self.aux_logits and self.training:
aux2 = self.aux2(x)
x = self.inception4e(x)
x = self.maxpool4(x)
x = self.inception5a(x)
x = self.inception5b(x)
x = self.avgpool(x)
x = x.reshape(x.shape[0], -1)
x = self.dropout(x)
x = self.fc1(x)
if self.aux_logits and self.training:
return aux1, aux2, x
else:
return x
class Inception_block(nn.Module):
def __init__(
self, in_channels, out_1x1, red_3x3, out_3x3, red_5x5, out_5x5, out_1x1pool
):
super(Inception_block, self).__init__()
self.branch1 = conv_block(in_channels, out_1x1, kernel_size=1)
self.branch2 = nn.Sequential(
conv_block(in_channels, red_3x3, kernel_size=1),
conv_block(red_3x3, out_3x3, kernel_size=(3, 3), padding=1),
)
self.branch3 = nn.Sequential(
conv_block(in_channels, red_5x5, kernel_size=1),
conv_block(red_5x5, out_5x5, kernel_size=5, padding=2),
)
self.branch4 = nn.Sequential(
nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
conv_block(in_channels, out_1x1pool, kernel_size=1),
)
def forward(self, x):
return torch.cat(
[self.branch1(x), self.branch2(x), self.branch3(x), self.branch4(x)], 1
)
class InceptionAux(nn.Module):
def __init__(self, in_channels, num_classes):
super(InceptionAux, self).__init__()
self.relu = nn.ReLU()
self.dropout = nn.Dropout(p=0.7)
self.pool = nn.AvgPool2d(kernel_size=5, stride=3)
self.conv = conv_block(in_channels, 128, kernel_size=1)
self.fc1 = nn.Linear(2048, 1024)
self.fc2 = nn.Linear(1024, num_classes)
def forward(self, x):
x = self.pool(x)
x = self.conv(x)
x = x.reshape(x.shape[0], -1)
x = self.relu(self.fc1(x))
x = self.dropout(x)
x = self.fc2(x)
return x
class conv_block(nn.Module):
def __init__(self, in_channels, out_channels, **kwargs):
super(conv_block, self).__init__()
self.relu = nn.ReLU()
self.conv = nn.Conv2d(in_channels, out_channels, **kwargs)
self.batchnorm = nn.BatchNorm2d(out_channels)
def forward(self, x):
return self.relu(self.batchnorm(self.conv(x)))
if __name__ == "__main__":
BATCH_SIZE = 5
x = torch.randn(BATCH_SIZE, 3, 224, 224)
model = GoogLeNet(aux_logits=True, num_classes=1000)
print(model(x)[2].shape)
assert model(x)[2].shape == torch.Size([BATCH_SIZE, 1000])